Spaces:
Running
Running
from argparse import ArgumentParser | |
from functools import lru_cache | |
from typing import List | |
import cv2 | |
import numpy | |
import facefusion.jobs.job_manager | |
import facefusion.jobs.job_store | |
import facefusion.processors.core as processors | |
from facefusion import config, content_analyser, inference_manager, logger, process_manager, state_manager, video_manager, wording | |
from facefusion.common_helper import create_int_metavar | |
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url | |
from facefusion.execution import has_execution_provider | |
from facefusion.filesystem import in_directory, is_image, is_video, resolve_relative_path, same_file_extension | |
from facefusion.processors import choices as processors_choices | |
from facefusion.processors.types import FrameEnhancerInputs | |
from facefusion.program_helper import find_argument_group | |
from facefusion.thread_helper import conditional_thread_semaphore | |
from facefusion.types import ApplyStateItem, Args, DownloadScope, Face, InferencePool, ModelOptions, ModelSet, ProcessMode, QueuePayload, UpdateProgress, VisionFrame | |
from facefusion.vision import create_tile_frames, merge_tile_frames, read_image, read_static_image, write_image | |
def create_static_model_set(download_scope : DownloadScope) -> ModelSet: | |
return\ | |
{ | |
'clear_reality_x4': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'clear_reality_x4.hash'), | |
'path': resolve_relative_path('../.assets/models/clear_reality_x4.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'clear_reality_x4.onnx'), | |
'path': resolve_relative_path('../.assets/models/clear_reality_x4.onnx') | |
} | |
}, | |
'size': (128, 8, 4), | |
'scale': 4 | |
}, | |
'lsdir_x4': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'lsdir_x4.hash'), | |
'path': resolve_relative_path('../.assets/models/lsdir_x4.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'lsdir_x4.onnx'), | |
'path': resolve_relative_path('../.assets/models/lsdir_x4.onnx') | |
} | |
}, | |
'size': (128, 8, 4), | |
'scale': 4 | |
}, | |
'nomos8k_sc_x4': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'nomos8k_sc_x4.hash'), | |
'path': resolve_relative_path('../.assets/models/nomos8k_sc_x4.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'nomos8k_sc_x4.onnx'), | |
'path': resolve_relative_path('../.assets/models/nomos8k_sc_x4.onnx') | |
} | |
}, | |
'size': (128, 8, 4), | |
'scale': 4 | |
}, | |
'real_esrgan_x2': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x2.hash'), | |
'path': resolve_relative_path('../.assets/models/real_esrgan_x2.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x2.onnx'), | |
'path': resolve_relative_path('../.assets/models/real_esrgan_x2.onnx') | |
} | |
}, | |
'size': (256, 16, 8), | |
'scale': 2 | |
}, | |
'real_esrgan_x2_fp16': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x2_fp16.hash'), | |
'path': resolve_relative_path('../.assets/models/real_esrgan_x2_fp16.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x2_fp16.onnx'), | |
'path': resolve_relative_path('../.assets/models/real_esrgan_x2_fp16.onnx') | |
} | |
}, | |
'size': (256, 16, 8), | |
'scale': 2 | |
}, | |
'real_esrgan_x4': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x4.hash'), | |
'path': resolve_relative_path('../.assets/models/real_esrgan_x4.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x4.onnx'), | |
'path': resolve_relative_path('../.assets/models/real_esrgan_x4.onnx') | |
} | |
}, | |
'size': (256, 16, 8), | |
'scale': 4 | |
}, | |
'real_esrgan_x4_fp16': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x4_fp16.hash'), | |
'path': resolve_relative_path('../.assets/models/real_esrgan_x4_fp16.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x4_fp16.onnx'), | |
'path': resolve_relative_path('../.assets/models/real_esrgan_x4_fp16.onnx') | |
} | |
}, | |
'size': (256, 16, 8), | |
'scale': 4 | |
}, | |
'real_esrgan_x8': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x8.hash'), | |
'path': resolve_relative_path('../.assets/models/real_esrgan_x8.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x8.onnx'), | |
'path': resolve_relative_path('../.assets/models/real_esrgan_x8.onnx') | |
} | |
}, | |
'size': (256, 16, 8), | |
'scale': 8 | |
}, | |
'real_esrgan_x8_fp16': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x8_fp16.hash'), | |
'path': resolve_relative_path('../.assets/models/real_esrgan_x8_fp16.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'real_esrgan_x8_fp16.onnx'), | |
'path': resolve_relative_path('../.assets/models/real_esrgan_x8_fp16.onnx') | |
} | |
}, | |
'size': (256, 16, 8), | |
'scale': 8 | |
}, | |
'real_hatgan_x4': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'real_hatgan_x4.hash'), | |
'path': resolve_relative_path('../.assets/models/real_hatgan_x4.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'real_hatgan_x4.onnx'), | |
'path': resolve_relative_path('../.assets/models/real_hatgan_x4.onnx') | |
} | |
}, | |
'size': (256, 16, 8), | |
'scale': 4 | |
}, | |
'real_web_photo_x4': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'real_web_photo_x4.hash'), | |
'path': resolve_relative_path('../.assets/models/real_web_photo_x4.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'real_web_photo_x4.onnx'), | |
'path': resolve_relative_path('../.assets/models/real_web_photo_x4.onnx') | |
} | |
}, | |
'size': (64, 4, 2), | |
'scale': 4 | |
}, | |
'realistic_rescaler_x4': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'realistic_rescaler_x4.hash'), | |
'path': resolve_relative_path('../.assets/models/realistic_rescaler_x4.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'realistic_rescaler_x4.onnx'), | |
'path': resolve_relative_path('../.assets/models/realistic_rescaler_x4.onnx') | |
} | |
}, | |
'size': (128, 8, 4), | |
'scale': 4 | |
}, | |
'remacri_x4': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'remacri_x4.hash'), | |
'path': resolve_relative_path('../.assets/models/remacri_x4.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'remacri_x4.onnx'), | |
'path': resolve_relative_path('../.assets/models/remacri_x4.onnx') | |
} | |
}, | |
'size': (128, 8, 4), | |
'scale': 4 | |
}, | |
'siax_x4': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'siax_x4.hash'), | |
'path': resolve_relative_path('../.assets/models/siax_x4.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'siax_x4.onnx'), | |
'path': resolve_relative_path('../.assets/models/siax_x4.onnx') | |
} | |
}, | |
'size': (128, 8, 4), | |
'scale': 4 | |
}, | |
'span_kendata_x4': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'span_kendata_x4.hash'), | |
'path': resolve_relative_path('../.assets/models/span_kendata_x4.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'span_kendata_x4.onnx'), | |
'path': resolve_relative_path('../.assets/models/span_kendata_x4.onnx') | |
} | |
}, | |
'size': (128, 8, 4), | |
'scale': 4 | |
}, | |
'swin2_sr_x4': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'swin2_sr_x4.hash'), | |
'path': resolve_relative_path('../.assets/models/swin2_sr_x4.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.1.0', 'swin2_sr_x4.onnx'), | |
'path': resolve_relative_path('../.assets/models/swin2_sr_x4.onnx') | |
} | |
}, | |
'size': (128, 8, 4), | |
'scale': 4 | |
}, | |
'ultra_sharp_x4': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'ultra_sharp_x4.hash'), | |
'path': resolve_relative_path('../.assets/models/ultra_sharp_x4.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.0.0', 'ultra_sharp_x4.onnx'), | |
'path': resolve_relative_path('../.assets/models/ultra_sharp_x4.onnx') | |
} | |
}, | |
'size': (128, 8, 4), | |
'scale': 4 | |
}, | |
'ultra_sharp_2_x4': | |
{ | |
'hashes': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.3.0', 'ultra_sharp_2_x4.hash'), | |
'path': resolve_relative_path('../.assets/models/ultra_sharp_2_x4.hash') | |
} | |
}, | |
'sources': | |
{ | |
'frame_enhancer': | |
{ | |
'url': resolve_download_url('models-3.3.0', 'ultra_sharp_2_x4.onnx'), | |
'path': resolve_relative_path('../.assets/models/ultra_sharp_2_x4.onnx') | |
} | |
}, | |
'size': (1024, 64, 32), | |
'scale': 4 | |
} | |
} | |
def get_inference_pool() -> InferencePool: | |
model_names = [ get_frame_enhancer_model() ] | |
model_source_set = get_model_options().get('sources') | |
return inference_manager.get_inference_pool(__name__, model_names, model_source_set) | |
def clear_inference_pool() -> None: | |
model_names = [ get_frame_enhancer_model() ] | |
inference_manager.clear_inference_pool(__name__, model_names) | |
def get_model_options() -> ModelOptions: | |
model_name = get_frame_enhancer_model() | |
return create_static_model_set('full').get(model_name) | |
def get_frame_enhancer_model() -> str: | |
frame_enhancer_model = state_manager.get_item('frame_enhancer_model') | |
if has_execution_provider('coreml'): | |
if frame_enhancer_model == 'real_esrgan_x2_fp16': | |
return 'real_esrgan_x2' | |
if frame_enhancer_model == 'real_esrgan_x4_fp16': | |
return 'real_esrgan_x4' | |
if frame_enhancer_model == 'real_esrgan_x8_fp16': | |
return 'real_esrgan_x8' | |
return frame_enhancer_model | |
def register_args(program : ArgumentParser) -> None: | |
group_processors = find_argument_group(program, 'processors') | |
if group_processors: | |
group_processors.add_argument('--frame-enhancer-model', help = wording.get('help.frame_enhancer_model'), default = config.get_str_value('processors', 'frame_enhancer_model', 'span_kendata_x4'), choices = processors_choices.frame_enhancer_models) | |
group_processors.add_argument('--frame-enhancer-blend', help = wording.get('help.frame_enhancer_blend'), type = int, default = config.get_int_value('processors', 'frame_enhancer_blend', '80'), choices = processors_choices.frame_enhancer_blend_range, metavar = create_int_metavar(processors_choices.frame_enhancer_blend_range)) | |
facefusion.jobs.job_store.register_step_keys([ 'frame_enhancer_model', 'frame_enhancer_blend' ]) | |
def apply_args(args : Args, apply_state_item : ApplyStateItem) -> None: | |
apply_state_item('frame_enhancer_model', args.get('frame_enhancer_model')) | |
apply_state_item('frame_enhancer_blend', args.get('frame_enhancer_blend')) | |
def pre_check() -> bool: | |
model_hash_set = get_model_options().get('hashes') | |
model_source_set = get_model_options().get('sources') | |
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set) | |
def pre_process(mode : ProcessMode) -> bool: | |
if mode in [ 'output', 'preview' ] and not is_image(state_manager.get_item('target_path')) and not is_video(state_manager.get_item('target_path')): | |
logger.error(wording.get('choose_image_or_video_target') + wording.get('exclamation_mark'), __name__) | |
return False | |
if mode == 'output' and not in_directory(state_manager.get_item('output_path')): | |
logger.error(wording.get('specify_image_or_video_output') + wording.get('exclamation_mark'), __name__) | |
return False | |
if mode == 'output' and not same_file_extension(state_manager.get_item('target_path'), state_manager.get_item('output_path')): | |
logger.error(wording.get('match_target_and_output_extension') + wording.get('exclamation_mark'), __name__) | |
return False | |
return True | |
def post_process() -> None: | |
read_static_image.cache_clear() | |
video_manager.clear_video_pool() | |
if state_manager.get_item('video_memory_strategy') in [ 'strict', 'moderate' ]: | |
clear_inference_pool() | |
if state_manager.get_item('video_memory_strategy') == 'strict': | |
content_analyser.clear_inference_pool() | |
def enhance_frame(temp_vision_frame : VisionFrame) -> VisionFrame: | |
model_size = get_model_options().get('size') | |
model_scale = get_model_options().get('scale') | |
temp_height, temp_width = temp_vision_frame.shape[:2] | |
tile_vision_frames, pad_width, pad_height = create_tile_frames(temp_vision_frame, model_size) | |
for index, tile_vision_frame in enumerate(tile_vision_frames): | |
tile_vision_frame = prepare_tile_frame(tile_vision_frame) | |
tile_vision_frame = forward(tile_vision_frame) | |
tile_vision_frames[index] = normalize_tile_frame(tile_vision_frame) | |
merge_vision_frame = merge_tile_frames(tile_vision_frames, temp_width * model_scale, temp_height * model_scale, pad_width * model_scale, pad_height * model_scale, (model_size[0] * model_scale, model_size[1] * model_scale, model_size[2] * model_scale)) | |
temp_vision_frame = blend_frame(temp_vision_frame, merge_vision_frame) | |
return temp_vision_frame | |
def forward(tile_vision_frame : VisionFrame) -> VisionFrame: | |
frame_enhancer = get_inference_pool().get('frame_enhancer') | |
with conditional_thread_semaphore(): | |
tile_vision_frame = frame_enhancer.run(None, | |
{ | |
'input': tile_vision_frame | |
})[0] | |
return tile_vision_frame | |
def prepare_tile_frame(vision_tile_frame : VisionFrame) -> VisionFrame: | |
vision_tile_frame = numpy.expand_dims(vision_tile_frame[:, :, ::-1], axis = 0) | |
vision_tile_frame = vision_tile_frame.transpose(0, 3, 1, 2) | |
vision_tile_frame = vision_tile_frame.astype(numpy.float32) / 255.0 | |
return vision_tile_frame | |
def normalize_tile_frame(vision_tile_frame : VisionFrame) -> VisionFrame: | |
vision_tile_frame = vision_tile_frame.transpose(0, 2, 3, 1).squeeze(0) * 255 | |
vision_tile_frame = vision_tile_frame.clip(0, 255).astype(numpy.uint8)[:, :, ::-1] | |
return vision_tile_frame | |
def blend_frame(temp_vision_frame : VisionFrame, merge_vision_frame : VisionFrame) -> VisionFrame: | |
frame_enhancer_blend = 1 - (state_manager.get_item('frame_enhancer_blend') / 100) | |
temp_vision_frame = cv2.resize(temp_vision_frame, (merge_vision_frame.shape[1], merge_vision_frame.shape[0])) | |
temp_vision_frame = cv2.addWeighted(temp_vision_frame, frame_enhancer_blend, merge_vision_frame, 1 - frame_enhancer_blend, 0) | |
return temp_vision_frame | |
def get_reference_frame(source_face : Face, target_face : Face, temp_vision_frame : VisionFrame) -> VisionFrame: | |
pass | |
def process_frame(inputs : FrameEnhancerInputs) -> VisionFrame: | |
target_vision_frame = inputs.get('target_vision_frame') | |
return enhance_frame(target_vision_frame) | |
def process_frames(source_paths : List[str], queue_payloads : List[QueuePayload], update_progress : UpdateProgress) -> None: | |
for queue_payload in process_manager.manage(queue_payloads): | |
target_vision_path = queue_payload['frame_path'] | |
target_vision_frame = read_image(target_vision_path) | |
output_vision_frame = process_frame( | |
{ | |
'target_vision_frame': target_vision_frame | |
}) | |
write_image(target_vision_path, output_vision_frame) | |
update_progress(1) | |
def process_image(source_paths : List[str], target_path : str, output_path : str) -> None: | |
target_vision_frame = read_static_image(target_path) | |
output_vision_frame = process_frame( | |
{ | |
'target_vision_frame': target_vision_frame | |
}) | |
write_image(output_path, output_vision_frame) | |
def process_video(source_paths : List[str], temp_frame_paths : List[str]) -> None: | |
processors.multi_process_frames(None, temp_frame_paths, process_frames) | |