Spaces:
Running
Running
from typing import List | |
import numpy | |
from facefusion import state_manager | |
from facefusion.types import Face, FaceSelectorOrder, FaceSet, Gender, Race, Score | |
def find_similar_faces(faces : List[Face], reference_faces : FaceSet, face_distance : float) -> List[Face]: | |
similar_faces : List[Face] = [] | |
if faces and reference_faces: | |
for reference_set in reference_faces: | |
if not similar_faces: | |
for reference_face in reference_faces[reference_set]: | |
for face in faces: | |
if compare_faces(face, reference_face, face_distance): | |
similar_faces.append(face) | |
return similar_faces | |
def compare_faces(face : Face, reference_face : Face, face_distance : float) -> bool: | |
current_face_distance = calc_face_distance(face, reference_face) | |
current_face_distance = float(numpy.interp(current_face_distance, [ 0, 2 ], [ 0, 1 ])) | |
return current_face_distance < face_distance | |
def calc_face_distance(face : Face, reference_face : Face) -> float: | |
if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'): | |
return 1 - numpy.dot(face.normed_embedding, reference_face.normed_embedding) | |
return 0 | |
def sort_and_filter_faces(faces : List[Face]) -> List[Face]: | |
if faces: | |
if state_manager.get_item('face_selector_order'): | |
faces = sort_faces_by_order(faces, state_manager.get_item('face_selector_order')) | |
if state_manager.get_item('face_selector_gender'): | |
faces = filter_faces_by_gender(faces, state_manager.get_item('face_selector_gender')) | |
if state_manager.get_item('face_selector_race'): | |
faces = filter_faces_by_race(faces, state_manager.get_item('face_selector_race')) | |
if state_manager.get_item('face_selector_age_start') or state_manager.get_item('face_selector_age_end'): | |
faces = filter_faces_by_age(faces, state_manager.get_item('face_selector_age_start'), state_manager.get_item('face_selector_age_end')) | |
return faces | |
def sort_faces_by_order(faces : List[Face], order : FaceSelectorOrder) -> List[Face]: | |
if order == 'left-right': | |
return sorted(faces, key = get_bounding_box_left) | |
if order == 'right-left': | |
return sorted(faces, key = get_bounding_box_left, reverse = True) | |
if order == 'top-bottom': | |
return sorted(faces, key = get_bounding_box_top) | |
if order == 'bottom-top': | |
return sorted(faces, key = get_bounding_box_top, reverse = True) | |
if order == 'small-large': | |
return sorted(faces, key = get_bounding_box_area) | |
if order == 'large-small': | |
return sorted(faces, key = get_bounding_box_area, reverse = True) | |
if order == 'best-worst': | |
return sorted(faces, key = get_face_detector_score, reverse = True) | |
if order == 'worst-best': | |
return sorted(faces, key = get_face_detector_score) | |
return faces | |
def get_bounding_box_left(face : Face) -> float: | |
return face.bounding_box[0] | |
def get_bounding_box_top(face : Face) -> float: | |
return face.bounding_box[1] | |
def get_bounding_box_area(face : Face) -> float: | |
return (face.bounding_box[2] - face.bounding_box[0]) * (face.bounding_box[3] - face.bounding_box[1]) | |
def get_face_detector_score(face : Face) -> Score: | |
return face.score_set.get('detector') | |
def filter_faces_by_gender(faces : List[Face], gender : Gender) -> List[Face]: | |
filter_faces = [] | |
for face in faces: | |
if face.gender == gender: | |
filter_faces.append(face) | |
return filter_faces | |
def filter_faces_by_age(faces : List[Face], face_selector_age_start : int, face_selector_age_end : int) -> List[Face]: | |
filter_faces = [] | |
age = range(face_selector_age_start, face_selector_age_end) | |
for face in faces: | |
if set(face.age) & set(age): | |
filter_faces.append(face) | |
return filter_faces | |
def filter_faces_by_race(faces : List[Face], race : Race) -> List[Face]: | |
filter_faces = [] | |
for face in faces: | |
if face.race == race: | |
filter_faces.append(face) | |
return filter_faces | |