ff3 / facefusion /face_masker.py
dangitdarnit's picture
Migrated from GitHub
0a7f3fe verified
raw
history blame
8.66 kB
from functools import lru_cache
from typing import List, Tuple
import cv2
import numpy
import facefusion.choices
from facefusion import inference_manager, state_manager
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.types import DownloadScope, DownloadSet, FaceLandmark68, FaceMaskArea, FaceMaskRegion, InferencePool, Mask, ModelSet, Padding, VisionFrame
@lru_cache(maxsize = None)
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
return\
{
'xseg_1':
{
'hashes':
{
'face_occluder':
{
'url': resolve_download_url('models-3.1.0', 'xseg_1.hash'),
'path': resolve_relative_path('../.assets/models/xseg_1.hash')
}
},
'sources':
{
'face_occluder':
{
'url': resolve_download_url('models-3.1.0', 'xseg_1.onnx'),
'path': resolve_relative_path('../.assets/models/xseg_1.onnx')
}
},
'size': (256, 256)
},
'xseg_2':
{
'hashes':
{
'face_occluder':
{
'url': resolve_download_url('models-3.1.0', 'xseg_2.hash'),
'path': resolve_relative_path('../.assets/models/xseg_2.hash')
}
},
'sources':
{
'face_occluder':
{
'url': resolve_download_url('models-3.1.0', 'xseg_2.onnx'),
'path': resolve_relative_path('../.assets/models/xseg_2.onnx')
}
},
'size': (256, 256)
},
'xseg_3':
{
'hashes':
{
'face_occluder':
{
'url': resolve_download_url('models-3.2.0', 'xseg_3.hash'),
'path': resolve_relative_path('../.assets/models/xseg_3.hash')
}
},
'sources':
{
'face_occluder':
{
'url': resolve_download_url('models-3.2.0', 'xseg_3.onnx'),
'path': resolve_relative_path('../.assets/models/xseg_3.onnx')
}
},
'size': (256, 256)
},
'bisenet_resnet_18':
{
'hashes':
{
'face_parser':
{
'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.hash'),
'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.hash')
}
},
'sources':
{
'face_parser':
{
'url': resolve_download_url('models-3.1.0', 'bisenet_resnet_18.onnx'),
'path': resolve_relative_path('../.assets/models/bisenet_resnet_18.onnx')
}
},
'size': (512, 512)
},
'bisenet_resnet_34':
{
'hashes':
{
'face_parser':
{
'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.hash'),
'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.hash')
}
},
'sources':
{
'face_parser':
{
'url': resolve_download_url('models-3.0.0', 'bisenet_resnet_34.onnx'),
'path': resolve_relative_path('../.assets/models/bisenet_resnet_34.onnx')
}
},
'size': (512, 512)
}
}
def get_inference_pool() -> InferencePool:
model_names = [ state_manager.get_item('face_occluder_model'), state_manager.get_item('face_parser_model') ]
_, model_source_set = collect_model_downloads()
return inference_manager.get_inference_pool(__name__, model_names, model_source_set)
def clear_inference_pool() -> None:
model_names = [ state_manager.get_item('face_occluder_model'), state_manager.get_item('face_parser_model') ]
inference_manager.clear_inference_pool(__name__, model_names)
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
model_set = create_static_model_set('full')
model_hash_set = {}
model_source_set = {}
for face_occluder_model in [ 'xseg_1', 'xseg_2', 'xseg_3' ]:
if state_manager.get_item('face_occluder_model') == face_occluder_model:
model_hash_set[face_occluder_model] = model_set.get(face_occluder_model).get('hashes').get('face_occluder')
model_source_set[face_occluder_model] = model_set.get(face_occluder_model).get('sources').get('face_occluder')
for face_parser_model in [ 'bisenet_resnet_18', 'bisenet_resnet_34' ]:
if state_manager.get_item('face_parser_model') == face_parser_model:
model_hash_set[face_parser_model] = model_set.get(face_parser_model).get('hashes').get('face_parser')
model_source_set[face_parser_model] = model_set.get(face_parser_model).get('sources').get('face_parser')
return model_hash_set, model_source_set
def pre_check() -> bool:
model_hash_set, model_source_set = collect_model_downloads()
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set)
def create_box_mask(crop_vision_frame : VisionFrame, face_mask_blur : float, face_mask_padding : Padding) -> Mask:
crop_size = crop_vision_frame.shape[:2][::-1]
blur_amount = int(crop_size[0] * 0.5 * face_mask_blur)
blur_area = max(blur_amount // 2, 1)
box_mask : Mask = numpy.ones(crop_size).astype(numpy.float32)
box_mask[:max(blur_area, int(crop_size[1] * face_mask_padding[0] / 100)), :] = 0
box_mask[-max(blur_area, int(crop_size[1] * face_mask_padding[2] / 100)):, :] = 0
box_mask[:, :max(blur_area, int(crop_size[0] * face_mask_padding[3] / 100))] = 0
box_mask[:, -max(blur_area, int(crop_size[0] * face_mask_padding[1] / 100)):] = 0
if blur_amount > 0:
box_mask = cv2.GaussianBlur(box_mask, (0, 0), blur_amount * 0.25)
return box_mask
def create_occlusion_mask(crop_vision_frame : VisionFrame) -> Mask:
model_name = state_manager.get_item('face_occluder_model')
model_size = create_static_model_set('full').get(model_name).get('size')
prepare_vision_frame = cv2.resize(crop_vision_frame, model_size)
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0).astype(numpy.float32) / 255.0
prepare_vision_frame = prepare_vision_frame.transpose(0, 1, 2, 3)
occlusion_mask = forward_occlude_face(prepare_vision_frame)
occlusion_mask = occlusion_mask.transpose(0, 1, 2).clip(0, 1).astype(numpy.float32)
occlusion_mask = cv2.resize(occlusion_mask, crop_vision_frame.shape[:2][::-1])
occlusion_mask = (cv2.GaussianBlur(occlusion_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
return occlusion_mask
def create_area_mask(crop_vision_frame : VisionFrame, face_landmark_68 : FaceLandmark68, face_mask_areas : List[FaceMaskArea]) -> Mask:
crop_size = crop_vision_frame.shape[:2][::-1]
landmark_points = []
for face_mask_area in face_mask_areas:
if face_mask_area in facefusion.choices.face_mask_area_set:
landmark_points.extend(facefusion.choices.face_mask_area_set.get(face_mask_area))
convex_hull = cv2.convexHull(face_landmark_68[landmark_points].astype(numpy.int32))
area_mask = numpy.zeros(crop_size).astype(numpy.float32)
cv2.fillConvexPoly(area_mask, convex_hull, 1.0) # type: ignore[call-overload]
area_mask = (cv2.GaussianBlur(area_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
return area_mask
def create_region_mask(crop_vision_frame : VisionFrame, face_mask_regions : List[FaceMaskRegion]) -> Mask:
model_name = state_manager.get_item('face_parser_model')
model_size = create_static_model_set('full').get(model_name).get('size')
prepare_vision_frame = cv2.resize(crop_vision_frame, model_size)
prepare_vision_frame = prepare_vision_frame[:, :, ::-1].astype(numpy.float32) / 255.0
prepare_vision_frame = numpy.subtract(prepare_vision_frame, numpy.array([ 0.485, 0.456, 0.406 ]).astype(numpy.float32))
prepare_vision_frame = numpy.divide(prepare_vision_frame, numpy.array([ 0.229, 0.224, 0.225 ]).astype(numpy.float32))
prepare_vision_frame = numpy.expand_dims(prepare_vision_frame, axis = 0)
prepare_vision_frame = prepare_vision_frame.transpose(0, 3, 1, 2)
region_mask = forward_parse_face(prepare_vision_frame)
region_mask = numpy.isin(region_mask.argmax(0), [ facefusion.choices.face_mask_region_set.get(face_mask_region) for face_mask_region in face_mask_regions ])
region_mask = cv2.resize(region_mask.astype(numpy.float32), crop_vision_frame.shape[:2][::-1])
region_mask = (cv2.GaussianBlur(region_mask.clip(0, 1), (0, 0), 5).clip(0.5, 1) - 0.5) * 2
return region_mask
def forward_occlude_face(prepare_vision_frame : VisionFrame) -> Mask:
model_name = state_manager.get_item('face_occluder_model')
face_occluder = get_inference_pool().get(model_name)
with conditional_thread_semaphore():
occlusion_mask : Mask = face_occluder.run(None,
{
'input': prepare_vision_frame
})[0][0]
return occlusion_mask
def forward_parse_face(prepare_vision_frame : VisionFrame) -> Mask:
model_name = state_manager.get_item('face_parser_model')
face_parser = get_inference_pool().get(model_name)
with conditional_thread_semaphore():
region_mask : Mask = face_parser.run(None,
{
'input': prepare_vision_frame
})[0][0]
return region_mask