ff3 / facefusion /content_analyser.py
dangitdarnit's picture
Update facefusion/content_analyser.py
d57e43f verified
raw
history blame
6.92 kB
from functools import lru_cache
from typing import List, Tuple
import numpy
from tqdm import tqdm
from facefusion import inference_manager, state_manager, wording
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url
from facefusion.execution import has_execution_provider
from facefusion.filesystem import resolve_relative_path
from facefusion.thread_helper import conditional_thread_semaphore
from facefusion.types import Detection, DownloadScope, DownloadSet, ExecutionProvider, Fps, InferencePool, ModelSet, VisionFrame
from facefusion.vision import detect_video_fps, fit_frame, read_image, read_video_frame
STREAM_COUNTER = 0
@lru_cache(maxsize = None)
def create_static_model_set(download_scope : DownloadScope) -> ModelSet:
return\
{
'nsfw_1':
{
'hashes':
{
'content_analyser':
{
'url': resolve_download_url('models-3.3.0', 'nsfw_1.hash'),
'path': resolve_relative_path('../.assets/models/nsfw_1.hash')
}
},
'sources':
{
'content_analyser':
{
'url': resolve_download_url('models-3.3.0', 'nsfw_1.onnx'),
'path': resolve_relative_path('../.assets/models/nsfw_1.onnx')
}
},
'size': (640, 640),
'mean': (0.0, 0.0, 0.0),
'standard_deviation': (1.0, 1.0, 1.0)
},
'nsfw_2':
{
'hashes':
{
'content_analyser':
{
'url': resolve_download_url('models-3.3.0', 'nsfw_2.hash'),
'path': resolve_relative_path('../.assets/models/nsfw_2.hash')
}
},
'sources':
{
'content_analyser':
{
'url': resolve_download_url('models-3.3.0', 'nsfw_2.onnx'),
'path': resolve_relative_path('../.assets/models/nsfw_2.onnx')
}
},
'size': (384, 384),
'mean': (0.5, 0.5, 0.5),
'standard_deviation': (0.5, 0.5, 0.5)
},
'nsfw_3':
{
'hashes':
{
'content_analyser':
{
'url': resolve_download_url('models-3.3.0', 'nsfw_3.hash'),
'path': resolve_relative_path('../.assets/models/nsfw_3.hash')
}
},
'sources':
{
'content_analyser':
{
'url': resolve_download_url('models-3.3.0', 'nsfw_3.onnx'),
'path': resolve_relative_path('../.assets/models/nsfw_3.onnx')
}
},
'size': (448, 448),
'mean': (0.48145466, 0.4578275, 0.40821073),
'standard_deviation': (0.26862954, 0.26130258, 0.27577711)
}
}
def get_inference_pool() -> InferencePool:
model_names = [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ]
_, model_source_set = collect_model_downloads()
return inference_manager.get_inference_pool(__name__, model_names, model_source_set)
def clear_inference_pool() -> None:
model_names = [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ]
inference_manager.clear_inference_pool(__name__, model_names)
def resolve_execution_providers() -> List[ExecutionProvider]:
if has_execution_provider('coreml'):
return [ 'cpu' ]
return state_manager.get_item('execution_providers')
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]:
model_set = create_static_model_set('full')
model_hash_set = {}
model_source_set = {}
for content_analyser_model in [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ]:
model_hash_set[content_analyser_model] = model_set.get(content_analyser_model).get('hashes').get('content_analyser')
model_source_set[content_analyser_model] = model_set.get(content_analyser_model).get('sources').get('content_analyser')
return model_hash_set, model_source_set
def pre_check() -> bool:
model_hash_set, model_source_set = collect_model_downloads()
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set)
def analyse_stream(vision_frame : VisionFrame, video_fps : Fps) -> bool:
global STREAM_COUNTER
STREAM_COUNTER = STREAM_COUNTER + 1
if STREAM_COUNTER % int(video_fps) == 0:
return analyse_frame(vision_frame)
return False
def analyse_frame(vision_frame : VisionFrame) -> bool:
return detect_nsfw(vision_frame)
@lru_cache(maxsize = None)
def analyse_image(image_path : str) -> bool:
vision_frame = read_image(image_path)
return analyse_frame(vision_frame)
@lru_cache(maxsize = None)
def analyse_video(video_path : str, trim_frame_start : int, trim_frame_end : int) -> bool:
video_fps = detect_video_fps(video_path)
frame_range = range(trim_frame_start, trim_frame_end)
rate = 0.0
total = 0
counter = 0
with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress:
for frame_number in frame_range:
if frame_number % int(video_fps) == 0:
vision_frame = read_video_frame(video_path, frame_number)
total += 1
if analyse_frame(vision_frame):
counter += 1
if counter > 0 and total > 0:
rate = counter / total * 100
progress.set_postfix(rate = rate)
progress.update()
return bool(rate > 10.0)
def detect_nsfw(vision_frame : VisionFrame) -> bool:
is_nsfw_1 = detect_with_nsfw_1(vision_frame)
is_nsfw_2 = detect_with_nsfw_2(vision_frame)
is_nsfw_3 = detect_with_nsfw_3(vision_frame)
return False
def detect_with_nsfw_1(vision_frame : VisionFrame) -> bool:
detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_1')
detection = forward_nsfw(detect_vision_frame, 'nsfw_1')
detection_score = numpy.max(numpy.amax(detection[:, 4:], axis = 1))
return bool(detection_score > 0.2)
def detect_with_nsfw_2(vision_frame : VisionFrame) -> bool:
detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_2')
detection = forward_nsfw(detect_vision_frame, 'nsfw_2')
detection_score = detection[0] - detection[1]
return bool(detection_score > 0.25)
def detect_with_nsfw_3(vision_frame : VisionFrame) -> bool:
detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_3')
detection = forward_nsfw(detect_vision_frame, 'nsfw_3')
detection_score = (detection[2] + detection[3]) - (detection[0] + detection[1])
return bool(detection_score > 10.5)
def forward_nsfw(vision_frame : VisionFrame, nsfw_model : str) -> Detection:
content_analyser = get_inference_pool().get(nsfw_model)
with conditional_thread_semaphore():
detection = content_analyser.run(None,
{
'input': vision_frame
})[0]
if nsfw_model in [ 'nsfw_2', 'nsfw_3' ]:
return detection[0]
return detection
def prepare_detect_frame(temp_vision_frame : VisionFrame, model_name : str) -> VisionFrame:
model_set = create_static_model_set('full').get(model_name)
model_size = model_set.get('size')
model_mean = model_set.get('mean')
model_standard_deviation = model_set.get('standard_deviation')
detect_vision_frame = fit_frame(temp_vision_frame, model_size)
detect_vision_frame = detect_vision_frame[:, :, ::-1] / 255.0
detect_vision_frame -= model_mean
detect_vision_frame /= model_standard_deviation
detect_vision_frame = numpy.expand_dims(detect_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32)
return detect_vision_frame