Spaces:
Running
Running
from functools import lru_cache | |
from typing import List, Tuple | |
import numpy | |
from tqdm import tqdm | |
from facefusion import inference_manager, state_manager, wording | |
from facefusion.download import conditional_download_hashes, conditional_download_sources, resolve_download_url | |
from facefusion.execution import has_execution_provider | |
from facefusion.filesystem import resolve_relative_path | |
from facefusion.thread_helper import conditional_thread_semaphore | |
from facefusion.types import Detection, DownloadScope, DownloadSet, ExecutionProvider, Fps, InferencePool, ModelSet, VisionFrame | |
from facefusion.vision import detect_video_fps, fit_frame, read_image, read_video_frame | |
STREAM_COUNTER = 0 | |
def create_static_model_set(download_scope : DownloadScope) -> ModelSet: | |
return\ | |
{ | |
'nsfw_1': | |
{ | |
'hashes': | |
{ | |
'content_analyser': | |
{ | |
'url': resolve_download_url('models-3.3.0', 'nsfw_1.hash'), | |
'path': resolve_relative_path('../.assets/models/nsfw_1.hash') | |
} | |
}, | |
'sources': | |
{ | |
'content_analyser': | |
{ | |
'url': resolve_download_url('models-3.3.0', 'nsfw_1.onnx'), | |
'path': resolve_relative_path('../.assets/models/nsfw_1.onnx') | |
} | |
}, | |
'size': (640, 640), | |
'mean': (0.0, 0.0, 0.0), | |
'standard_deviation': (1.0, 1.0, 1.0) | |
}, | |
'nsfw_2': | |
{ | |
'hashes': | |
{ | |
'content_analyser': | |
{ | |
'url': resolve_download_url('models-3.3.0', 'nsfw_2.hash'), | |
'path': resolve_relative_path('../.assets/models/nsfw_2.hash') | |
} | |
}, | |
'sources': | |
{ | |
'content_analyser': | |
{ | |
'url': resolve_download_url('models-3.3.0', 'nsfw_2.onnx'), | |
'path': resolve_relative_path('../.assets/models/nsfw_2.onnx') | |
} | |
}, | |
'size': (384, 384), | |
'mean': (0.5, 0.5, 0.5), | |
'standard_deviation': (0.5, 0.5, 0.5) | |
}, | |
'nsfw_3': | |
{ | |
'hashes': | |
{ | |
'content_analyser': | |
{ | |
'url': resolve_download_url('models-3.3.0', 'nsfw_3.hash'), | |
'path': resolve_relative_path('../.assets/models/nsfw_3.hash') | |
} | |
}, | |
'sources': | |
{ | |
'content_analyser': | |
{ | |
'url': resolve_download_url('models-3.3.0', 'nsfw_3.onnx'), | |
'path': resolve_relative_path('../.assets/models/nsfw_3.onnx') | |
} | |
}, | |
'size': (448, 448), | |
'mean': (0.48145466, 0.4578275, 0.40821073), | |
'standard_deviation': (0.26862954, 0.26130258, 0.27577711) | |
} | |
} | |
def get_inference_pool() -> InferencePool: | |
model_names = [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ] | |
_, model_source_set = collect_model_downloads() | |
return inference_manager.get_inference_pool(__name__, model_names, model_source_set) | |
def clear_inference_pool() -> None: | |
model_names = [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ] | |
inference_manager.clear_inference_pool(__name__, model_names) | |
def resolve_execution_providers() -> List[ExecutionProvider]: | |
if has_execution_provider('coreml'): | |
return [ 'cpu' ] | |
return state_manager.get_item('execution_providers') | |
def collect_model_downloads() -> Tuple[DownloadSet, DownloadSet]: | |
model_set = create_static_model_set('full') | |
model_hash_set = {} | |
model_source_set = {} | |
for content_analyser_model in [ 'nsfw_1', 'nsfw_2', 'nsfw_3' ]: | |
model_hash_set[content_analyser_model] = model_set.get(content_analyser_model).get('hashes').get('content_analyser') | |
model_source_set[content_analyser_model] = model_set.get(content_analyser_model).get('sources').get('content_analyser') | |
return model_hash_set, model_source_set | |
def pre_check() -> bool: | |
model_hash_set, model_source_set = collect_model_downloads() | |
return conditional_download_hashes(model_hash_set) and conditional_download_sources(model_source_set) | |
def analyse_stream(vision_frame : VisionFrame, video_fps : Fps) -> bool: | |
global STREAM_COUNTER | |
STREAM_COUNTER = STREAM_COUNTER + 1 | |
if STREAM_COUNTER % int(video_fps) == 0: | |
return analyse_frame(vision_frame) | |
return False | |
def analyse_frame(vision_frame : VisionFrame) -> bool: | |
return detect_nsfw(vision_frame) | |
def analyse_image(image_path : str) -> bool: | |
vision_frame = read_image(image_path) | |
return analyse_frame(vision_frame) | |
def analyse_video(video_path : str, trim_frame_start : int, trim_frame_end : int) -> bool: | |
video_fps = detect_video_fps(video_path) | |
frame_range = range(trim_frame_start, trim_frame_end) | |
rate = 0.0 | |
total = 0 | |
counter = 0 | |
with tqdm(total = len(frame_range), desc = wording.get('analysing'), unit = 'frame', ascii = ' =', disable = state_manager.get_item('log_level') in [ 'warn', 'error' ]) as progress: | |
for frame_number in frame_range: | |
if frame_number % int(video_fps) == 0: | |
vision_frame = read_video_frame(video_path, frame_number) | |
total += 1 | |
if analyse_frame(vision_frame): | |
counter += 1 | |
if counter > 0 and total > 0: | |
rate = counter / total * 100 | |
progress.set_postfix(rate = rate) | |
progress.update() | |
return bool(rate > 10.0) | |
def detect_nsfw(vision_frame : VisionFrame) -> bool: | |
is_nsfw_1 = detect_with_nsfw_1(vision_frame) | |
is_nsfw_2 = detect_with_nsfw_2(vision_frame) | |
is_nsfw_3 = detect_with_nsfw_3(vision_frame) | |
return False | |
def detect_with_nsfw_1(vision_frame : VisionFrame) -> bool: | |
detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_1') | |
detection = forward_nsfw(detect_vision_frame, 'nsfw_1') | |
detection_score = numpy.max(numpy.amax(detection[:, 4:], axis = 1)) | |
return bool(detection_score > 0.2) | |
def detect_with_nsfw_2(vision_frame : VisionFrame) -> bool: | |
detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_2') | |
detection = forward_nsfw(detect_vision_frame, 'nsfw_2') | |
detection_score = detection[0] - detection[1] | |
return bool(detection_score > 0.25) | |
def detect_with_nsfw_3(vision_frame : VisionFrame) -> bool: | |
detect_vision_frame = prepare_detect_frame(vision_frame, 'nsfw_3') | |
detection = forward_nsfw(detect_vision_frame, 'nsfw_3') | |
detection_score = (detection[2] + detection[3]) - (detection[0] + detection[1]) | |
return bool(detection_score > 10.5) | |
def forward_nsfw(vision_frame : VisionFrame, nsfw_model : str) -> Detection: | |
content_analyser = get_inference_pool().get(nsfw_model) | |
with conditional_thread_semaphore(): | |
detection = content_analyser.run(None, | |
{ | |
'input': vision_frame | |
})[0] | |
if nsfw_model in [ 'nsfw_2', 'nsfw_3' ]: | |
return detection[0] | |
return detection | |
def prepare_detect_frame(temp_vision_frame : VisionFrame, model_name : str) -> VisionFrame: | |
model_set = create_static_model_set('full').get(model_name) | |
model_size = model_set.get('size') | |
model_mean = model_set.get('mean') | |
model_standard_deviation = model_set.get('standard_deviation') | |
detect_vision_frame = fit_frame(temp_vision_frame, model_size) | |
detect_vision_frame = detect_vision_frame[:, :, ::-1] / 255.0 | |
detect_vision_frame -= model_mean | |
detect_vision_frame /= model_standard_deviation | |
detect_vision_frame = numpy.expand_dims(detect_vision_frame.transpose(2, 0, 1), axis = 0).astype(numpy.float32) | |
return detect_vision_frame | |