Spaces:
Sleeping
Sleeping
Uploaded Files from System
Browse files- README.md +64 -17
- app.py +255 -0
- requirements.txt +8 -3
README.md
CHANGED
@@ -1,20 +1,67 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
|
19 |
-
|
20 |
-
forums](https://discuss.streamlit.io).
|
|
|
1 |
+
# LoRA Fine-Tuning and CoreML Conversion with Streamlit
|
2 |
+
|
3 |
+
This project demonstrates how to fine-tune a large language model (LLM) using Low-Rank Adaptation (LoRA) and convert it to the CoreML format for on-device deployment. The entire process is wrapped in a user-friendly Streamlit web application.
|
4 |
+
|
5 |
+
## Features
|
6 |
+
|
7 |
+
- **Fine-Tune LLMs with LoRA:** Easily fine-tune the `distilbert/distilgpt2` model on the `roneneldan/TinyStories` dataset using Parameter-Efficient Fine-Tuning (PEFT) with LoRA.
|
8 |
+
- **Text Generation:** Generate creative stories from a text prompt using the fine-tuned model.
|
9 |
+
- **Adjustable Generation Parameters:** Control text generation with parameters like temperature, max length, and repetition penalty.
|
10 |
+
- **CoreML Conversion:** Convert the fine-tuned model to a `.mlpackage` file, ready for integration into Apple ecosystem applications.
|
11 |
+
- **Interactive Web UI:** A simple and interactive user interface built with Streamlit.
|
12 |
+
|
13 |
+
## How it Works
|
14 |
+
|
15 |
+
The application follows a simple workflow:
|
16 |
+
|
17 |
+
1. **Load Base Model:** It starts by loading the pre-trained `distilbert/distilgpt2` model and its tokenizer from the Hugging Face Hub.
|
18 |
+
2. **Fine-Tuning:** The user can initiate the fine-tuning process. The application uses the `peft` library to apply LoRA to the base model and trains it on the `TinyStories` dataset. The resulting LoRA adapter is saved locally.
|
19 |
+
3. **Text Generation:** Once the model is fine-tuned (or a pre-existing adapter is loaded), you can provide a prompt to generate stories.
|
20 |
+
4. **CoreML Conversion:** The application can merge the LoRA adapter with the base model and then convert the merged model into the CoreML format, which can be downloaded as a `.zip` file.
|
21 |
+
|
22 |
+
## Technologies Used
|
23 |
|
24 |
+
- **Model:** `distilbert/distilgpt2` from Hugging Face
|
25 |
+
- **Dataset:** `roneneldan/TinyStories` from Hugging Face
|
26 |
+
- **Fine-Tuning:** `peft` (Parameter-Efficient Fine-Tuning) library with LoRA
|
27 |
+
- **Framework:** PyTorch
|
28 |
+
- **Web App:** Streamlit
|
29 |
+
- **Model Conversion:** CoreMLTools
|
30 |
+
- **Core Libraries:** `transformers`, `datasets`, `accelerate`, `sentencepiece`
|
31 |
|
32 |
+
## Setup and Usage
|
33 |
+
|
34 |
+
1. **Clone the repository:**
|
35 |
+
```bash
|
36 |
+
git clone <repository-url>
|
37 |
+
cd <repository-directory>
|
38 |
+
```
|
39 |
+
|
40 |
+
2. **Create a virtual environment and install dependencies:**
|
41 |
+
```bash
|
42 |
+
python3 -m venv venv
|
43 |
+
source venv/bin/activate
|
44 |
+
pip install -r requirements.txt
|
45 |
+
```
|
46 |
+
|
47 |
+
3. **Run the Streamlit application:**
|
48 |
+
```bash
|
49 |
+
streamlit run app.py
|
50 |
+
```
|
51 |
+
|
52 |
+
4. **Open the application in your browser:**
|
53 |
+
Navigate to the URL provided by Streamlit (usually `http://localhost:8501`).
|
54 |
+
|
55 |
+
## File Structure
|
56 |
+
|
57 |
+
- `app.py`: The main Python script containing the Streamlit application logic.
|
58 |
+
- `requirements.txt`: A list of the Python packages required to run the project.
|
59 |
+
- `README.md`: This file, providing information about the project.
|
60 |
+
- `distilgpt2-lora-tinystories/`: (Generated Directory) This directory will be created to store the LoRA adapter after fine-tuning.
|
61 |
+
- `results/`: (Generated Directory) This directory is used by the `transformers.Trainer` to save training outputs.
|
62 |
+
- `distilgpt2-lora-tinystories.mlpackage/`: (Generated Directory) This directory will be created after the CoreML conversion.
|
63 |
+
- `distilgpt2-lora-tinystories.zip`: (Generated File) The zipped CoreML model ready for download.
|
64 |
+
|
65 |
+
---
|
66 |
|
67 |
+
Happy fine-tuning and story generating!
|
|
app.py
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import torch
|
3 |
+
from datasets import load_dataset
|
4 |
+
from peft import LoraConfig, get_peft_model, PeftModel
|
5 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
6 |
+
from transformers.training_args import TrainingArguments
|
7 |
+
from transformers.trainer import Trainer
|
8 |
+
import coremltools as ct
|
9 |
+
import os
|
10 |
+
import zipfile
|
11 |
+
import tempfile
|
12 |
+
|
13 |
+
MODEL_NAME = "distilbert/distilgpt2"
|
14 |
+
DATASET_NAME = "roneneldan/TinyStories"
|
15 |
+
ADAPTER_PATH = "distilgpt2-lora-tinystories"
|
16 |
+
|
17 |
+
@st.cache_resource
|
18 |
+
def load_base_model_and_tokenizer():
|
19 |
+
"""Loads the base model and tokenizer."""
|
20 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
21 |
+
if tokenizer.pad_token is None:
|
22 |
+
tokenizer.pad_token = tokenizer.eos_token
|
23 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
24 |
+
return model, tokenizer
|
25 |
+
|
26 |
+
def load_and_prepare_dataset(tokenizer, split="train"):
|
27 |
+
"""Loads and tokenizes the dataset."""
|
28 |
+
dataset = load_dataset(DATASET_NAME, split=split)
|
29 |
+
|
30 |
+
def tokenize_function(examples):
|
31 |
+
tokenized = tokenizer(
|
32 |
+
examples["text"],
|
33 |
+
truncation=True,
|
34 |
+
padding="max_length",
|
35 |
+
max_length=256
|
36 |
+
)
|
37 |
+
# For causal language modeling, labels are the same as input_ids
|
38 |
+
tokenized["labels"] = tokenized["input_ids"].copy()
|
39 |
+
return tokenized
|
40 |
+
|
41 |
+
# Handle different dataset types safely
|
42 |
+
try:
|
43 |
+
if hasattr(dataset, 'column_names'):
|
44 |
+
remove_cols = dataset.column_names
|
45 |
+
else:
|
46 |
+
remove_cols = None
|
47 |
+
except:
|
48 |
+
remove_cols = None
|
49 |
+
|
50 |
+
tokenized_dataset = dataset.map(
|
51 |
+
tokenize_function,
|
52 |
+
batched=True,
|
53 |
+
remove_columns=remove_cols
|
54 |
+
)
|
55 |
+
return tokenized_dataset
|
56 |
+
|
57 |
+
def fine_tune_model(model, tokenizer, tokenized_dataset):
|
58 |
+
"""Fine-tunes the model using LoRA."""
|
59 |
+
lora_config = LoraConfig(
|
60 |
+
r=4,
|
61 |
+
lora_alpha=16,
|
62 |
+
lora_dropout=0.1,
|
63 |
+
bias="none",
|
64 |
+
task_type="CAUSAL_LM",
|
65 |
+
)
|
66 |
+
|
67 |
+
peft_model = get_peft_model(model, lora_config)
|
68 |
+
peft_model.print_trainable_parameters()
|
69 |
+
|
70 |
+
training_args = TrainingArguments(
|
71 |
+
output_dir="./results",
|
72 |
+
num_train_epochs=0.5,
|
73 |
+
per_device_train_batch_size=1,
|
74 |
+
per_device_eval_batch_size=1,
|
75 |
+
gradient_accumulation_steps=4,
|
76 |
+
logging_steps=10,
|
77 |
+
save_steps=100,
|
78 |
+
eval_steps=50,
|
79 |
+
warmup_steps=10,
|
80 |
+
fp16=torch.cuda.is_available(),
|
81 |
+
dataloader_pin_memory=False,
|
82 |
+
remove_unused_columns=False,
|
83 |
+
max_steps=100,
|
84 |
+
)
|
85 |
+
|
86 |
+
trainer = Trainer(
|
87 |
+
model=peft_model,
|
88 |
+
args=training_args,
|
89 |
+
train_dataset=tokenized_dataset,
|
90 |
+
)
|
91 |
+
|
92 |
+
trainer.train()
|
93 |
+
peft_model.save_pretrained(ADAPTER_PATH)
|
94 |
+
return peft_model
|
95 |
+
|
96 |
+
def convert_to_coreml(model, tokenizer):
|
97 |
+
"""Converts the model to CoreML format."""
|
98 |
+
st.info("Merging LoRA adapter...")
|
99 |
+
merged_model = model.merge_and_unload()
|
100 |
+
st.success("Adapter merged.")
|
101 |
+
|
102 |
+
st.info("Moving model to CPU for CoreML conversion...")
|
103 |
+
merged_model = merged_model.cpu()
|
104 |
+
merged_model.eval()
|
105 |
+
st.success("Model moved to CPU.")
|
106 |
+
|
107 |
+
# Create a simple wrapper that only returns logits
|
108 |
+
class SimpleModel(torch.nn.Module):
|
109 |
+
def __init__(self, model):
|
110 |
+
super().__init__()
|
111 |
+
self.model = model
|
112 |
+
|
113 |
+
def forward(self, input_ids):
|
114 |
+
outputs = self.model(input_ids)
|
115 |
+
return outputs.logits
|
116 |
+
|
117 |
+
simple_model = SimpleModel(merged_model)
|
118 |
+
st.info("Created simple model wrapper.")
|
119 |
+
|
120 |
+
st.info("Tracing the model...")
|
121 |
+
example_input = tokenizer("Once upon a time", return_tensors="pt")
|
122 |
+
input_ids = example_input.input_ids
|
123 |
+
|
124 |
+
# Ensure input is on CPU
|
125 |
+
input_ids = input_ids.cpu()
|
126 |
+
|
127 |
+
with torch.no_grad():
|
128 |
+
traced_model = torch.jit.trace(simple_model, input_ids)
|
129 |
+
st.success("Model traced.")
|
130 |
+
|
131 |
+
st.info("Converting to CoreML ML Program...")
|
132 |
+
coreml_model = ct.convert(
|
133 |
+
traced_model,
|
134 |
+
convert_to="mlprogram",
|
135 |
+
inputs=[ct.TensorType(name="input_ids", shape=(1, 512), dtype=int)],
|
136 |
+
compute_units=ct.ComputeUnit.CPU_ONLY,
|
137 |
+
)
|
138 |
+
st.success("Conversion to CoreML complete.")
|
139 |
+
|
140 |
+
output_path = f"{ADAPTER_PATH}.mlpackage"
|
141 |
+
# Save CoreML model using the correct method
|
142 |
+
try:
|
143 |
+
coreml_model.save(output_path)
|
144 |
+
except AttributeError:
|
145 |
+
# Alternative method for newer versions
|
146 |
+
ct.models.MLModel(coreml_model).save(output_path)
|
147 |
+
return output_path
|
148 |
+
|
149 |
+
|
150 |
+
def main():
|
151 |
+
st.title("LoRA Fine-Tuning of distilgpt2 for TinyStories")
|
152 |
+
st.write("This app fine-tunes the `distilbert/distilgpt2` model on the `TinyStories` dataset using LoRA and PEFT.")
|
153 |
+
|
154 |
+
# --- Load Model and Tokenizer ---
|
155 |
+
with st.spinner("Loading base model and tokenizer..."):
|
156 |
+
base_model, tokenizer = load_base_model_and_tokenizer()
|
157 |
+
st.session_state.base_model = base_model
|
158 |
+
st.session_state.tokenizer = tokenizer
|
159 |
+
st.success("Base model and tokenizer loaded.")
|
160 |
+
st.markdown(f"**Model:** `{MODEL_NAME}`")
|
161 |
+
|
162 |
+
# --- Fine-Tuning ---
|
163 |
+
st.header("1. LoRA Fine-Tuning")
|
164 |
+
if st.button("Start Fine-Tuning"):
|
165 |
+
with st.spinner("Loading dataset and fine-tuning... This might take a few minutes."):
|
166 |
+
tokenized_dataset = load_and_prepare_dataset(tokenizer)
|
167 |
+
st.session_state.tokenized_dataset = tokenized_dataset
|
168 |
+
|
169 |
+
# Safe way to get dataset length
|
170 |
+
try:
|
171 |
+
dataset_length = len(tokenized_dataset)
|
172 |
+
st.info(f"Dataset loaded with {dataset_length} examples.")
|
173 |
+
except (TypeError, AttributeError):
|
174 |
+
st.info("Dataset loaded (length unknown).")
|
175 |
+
|
176 |
+
peft_model = fine_tune_model(base_model, tokenizer, tokenized_dataset)
|
177 |
+
st.session_state.peft_model = peft_model
|
178 |
+
st.success("Fine-tuning complete! LoRA adapter saved.")
|
179 |
+
st.balloons()
|
180 |
+
|
181 |
+
# Check if adapter exists to offer loading it
|
182 |
+
if os.path.exists(ADAPTER_PATH) and "peft_model" not in st.session_state:
|
183 |
+
if st.button("Load Fine-Tuned LoRA Adapter"):
|
184 |
+
with st.spinner("Loading fine-tuned model..."):
|
185 |
+
peft_model = PeftModel.from_pretrained(base_model, ADAPTER_PATH)
|
186 |
+
st.session_state.peft_model = peft_model
|
187 |
+
st.success("Fine-tuned LoRA model loaded.")
|
188 |
+
|
189 |
+
|
190 |
+
# --- Text Generation ---
|
191 |
+
if "peft_model" in st.session_state:
|
192 |
+
st.header("2. Generate Story")
|
193 |
+
prompt = st.text_input("Enter a prompt to start a story:", "Once upon a time, in a land full of sunshine,")
|
194 |
+
|
195 |
+
# Generation parameters
|
196 |
+
col1, col2, col3 = st.columns(3)
|
197 |
+
with col1:
|
198 |
+
temperature = st.slider("Temperature", 0.1, 2.0, 0.8, 0.1)
|
199 |
+
with col2:
|
200 |
+
max_length = st.slider("Max Length", 50, 200, 100, 10)
|
201 |
+
with col3:
|
202 |
+
repetition_penalty = st.slider("Repetition Penalty", 1.0, 2.0, 1.2, 0.1)
|
203 |
+
|
204 |
+
if st.button("Generate"):
|
205 |
+
with st.spinner("Generating text..."):
|
206 |
+
model = st.session_state.peft_model
|
207 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
208 |
+
|
209 |
+
device = next(model.parameters()).device
|
210 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
211 |
+
|
212 |
+
outputs = model.generate(
|
213 |
+
**inputs,
|
214 |
+
max_length=max_length,
|
215 |
+
num_return_sequences=1,
|
216 |
+
temperature=temperature,
|
217 |
+
do_sample=True,
|
218 |
+
top_k=50,
|
219 |
+
top_p=0.9,
|
220 |
+
repetition_penalty=repetition_penalty,
|
221 |
+
pad_token_id=tokenizer.eos_token_id,
|
222 |
+
eos_token_id=tokenizer.eos_token_id,
|
223 |
+
no_repeat_ngram_size=3
|
224 |
+
)
|
225 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
226 |
+
|
227 |
+
st.write("### Generated Story:")
|
228 |
+
st.write(generated_text)
|
229 |
+
|
230 |
+
# --- CoreML Conversion ---
|
231 |
+
st.header("3. Convert to CoreML")
|
232 |
+
if st.button("Convert Model to CoreML"):
|
233 |
+
with st.spinner("Converting model to CoreML format..."):
|
234 |
+
coreml_model_path = convert_to_coreml(st.session_state.peft_model, st.session_state.tokenizer)
|
235 |
+
st.success(f"Model successfully converted and saved to `{coreml_model_path}`")
|
236 |
+
|
237 |
+
# For .mlpackage files, we need to create a zip file for download
|
238 |
+
zip_path = f"{ADAPTER_PATH}.zip"
|
239 |
+
with zipfile.ZipFile(zip_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
|
240 |
+
for root, dirs, files in os.walk(coreml_model_path):
|
241 |
+
for file in files:
|
242 |
+
file_path = os.path.join(root, file)
|
243 |
+
arcname = os.path.relpath(file_path, coreml_model_path)
|
244 |
+
zipf.write(file_path, arcname)
|
245 |
+
|
246 |
+
with open(zip_path, "rb") as f:
|
247 |
+
st.download_button(
|
248 |
+
label="Download CoreML Model",
|
249 |
+
data=f,
|
250 |
+
file_name=os.path.basename(zip_path),
|
251 |
+
mime="application/zip"
|
252 |
+
)
|
253 |
+
|
254 |
+
if __name__ == "__main__":
|
255 |
+
main()
|
requirements.txt
CHANGED
@@ -1,3 +1,8 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
datasets
|
3 |
+
peft
|
4 |
+
streamlit
|
5 |
+
coremltools
|
6 |
+
torch
|
7 |
+
accelerate
|
8 |
+
sentencepiece
|