import gradio as gr from langchain.document_loaders import PDFMinerLoader, PyMuPDFLoader from langchain.text_splitter import CharacterTextSplitter import chromadb import chromadb.config from chromadb.config import Settings from transformers import T5ForConditionalGeneration, AutoTokenizer import torch import gradio as gr import uuid from sentence_transformers import SentenceTransformer import os # global file_name model_name = 'google/flan-t5-base' model = T5ForConditionalGeneration.from_pretrained(model_name, device_map='auto', offload_folder="offload") tokenizer = AutoTokenizer.from_pretrained(model_name) print('flan read') ST_name = 'sentence-transformers/sentence-t5-base' st_model = SentenceTransformer(ST_name) print('sentence read') def get_context(query_text, collection): query_emb = st_model.encode(query_text) query_response = collection.query(query_embeddings=query_emb.tolist(), n_results=4) context = query_response['documents'][0][0] context = context.replace('\n', ' ').replace(' ', ' ') return context def local_query(query, context): t5query = """Using the available context, please answer the question. If you aren't sure please say i don't know. Context: {} Question: {} """.format(context, query) print('t5 query is') primt(t5query) inputs = tokenizer(t5query, return_tensors="pt") print('done with tokenizer') outputs = model.generate(**inputs, max_new_tokens=20) return tokenizer.batch_decode(outputs, skip_special_tokens=True) def run_query(file, history, query): file_name = file.name # pdf file name input olarak verip, buraya upload event olarak gondermem gereki rmi loader = PDFMinerLoader(file_name) doc = loader.load() text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) texts = text_splitter.split_documents(doc) texts = [i.page_content for i in texts] doc_emb = st_model.encode(texts) doc_emb = doc_emb.tolist() ids = [str(uuid.uuid1()) for _ in doc_emb] client = chromadb.Client() collection = client.create_collection("test_db") collection.add( embeddings=doc_emb, documents=texts, ids=ids ) print('calling get contct function') print(collection) context = get_context(query, collection) print(context) print('calling local query') result = local_query(query, context) print(result) history = history.append(query) print(history) return history, result def upload_pdf(file): try: if file is not None: file_name = file.name return 'Successfully uploaded!' else: return "No file uploaded." except Exception as e: return f"An error occurred: {e}" with gr.Blocks() as demo: btn = gr.UploadButton("Upload a PDF", file_types=[".pdf"]) output = gr.Textbox(label="Output Box") chatbot = gr.Chatbot(value=[], elem_id="chatbot") with gr.Row(): with gr.Column(scale=0.70): txt = gr.Textbox( show_label=False, placeholder="Enter a question", ) # Event handler for uploading a PDF btn.upload(fn=upload_pdf, inputs=[btn], outputs=[output]) txt.submit(run_query, [btn, chatbot, txt], [chatbot,]) #.then( # generate_response, inputs =[chatbot,],outputs = chatbot,) demo.launch()