File size: 3,271 Bytes
301614f
 
 
9035153
 
 
604b59c
 
 
 
6c36800
1ea407d
725d485
2cd4e0a
 
 
 
058d9a5
 
2cd4e0a
 
 
604b59c
058d9a5
725d485
9035153
 
 
 
 
 
 
 
 
 
 
 
03e01d3
9035153
03e01d3
9035153
d99a408
9035153
 
fad633c
725d485
fad633c
d99a408
0140c96
725d485
 
 
 
 
 
 
 
 
 
 
 
 
 
dffeb2d
725d485
 
 
 
 
 
b295eed
725d485
 
868e2fc
 
 
9035153
53446f8
868e2fc
217d064
d99a408
 
 
53446f8
868e2fc
217d064
9035153
dffeb2d
911a8be
5573a68
911a8be
868e2fc
725d485
911a8be
 
5573a68
911a8be
 
 
 
 
 
23d4171
2024184
dffeb2d
 
a610295
d99a408
dffeb2d
2024184
 
 
 
fc4d061
7471e3e
23d4171
7f9bf9b
2347d67
a610295
112cf87
dffeb2d
 
7c1d20d
fc4d061
e554b8b
 
fc4d061
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
from langchain.document_loaders import PDFMinerLoader, PyMuPDFLoader
from langchain.text_splitter import CharacterTextSplitter
import chromadb
import chromadb.config
from chromadb.config import Settings
from transformers import T5ForConditionalGeneration, AutoTokenizer
import torch
import uuid
from sentence_transformers import SentenceTransformer
import os


model_name = 'google/flan-t5-base'
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map='auto', offload_folder="offload")
tokenizer = AutoTokenizer.from_pretrained(model_name)
print('flan read')


ST_name = 'sentence-transformers/sentence-t5-base'
st_model = SentenceTransformer(ST_name)
print('sentence read')


def get_context(query_text, collection):
    query_emb = st_model.encode(query_text)
    query_response = collection.query(query_embeddings=query_emb.tolist(), n_results=4)
    context = query_response['documents'][0][0]
    context = context.replace('\n', ' ').replace('  ', ' ')
    return context

def local_query(query, context):
    t5query = """Using the available context, please answer the question. 
    If you aren't sure please say i don't know.
    Context: {}
    Question: {}
    """.format(context, query)

    inputs = tokenizer(t5query, return_tensors="pt")

    outputs = model.generate(**inputs, max_new_tokens=20)
 
    return tokenizer.batch_decode(outputs, skip_special_tokens=True)

def run_query(file, history, query):

    file_name = file.name 
   
    loader = PDFMinerLoader(file_name)
    doc = loader.load()

    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
    texts = text_splitter.split_documents(doc)

    texts = [i.page_content for i in texts]

    doc_emb = st_model.encode(texts)
    doc_emb = doc_emb.tolist()

    ids = [str(uuid.uuid1()) for _ in doc_emb]

    client = chromadb.Client()
    collection = client.create_collection("test_db") 
    
    collection.add(
        embeddings=doc_emb,
        documents=texts,
        ids=ids
    )

    

    context = get_context(query, collection)

    print(context)
    print('calling local query')
    result = local_query(query, context)
    print('printing result after call back')
    print(result)
    print(history)
    history.append((query, result))
        

    print('printing history')
    print(history)
    return history, ""



def upload_pdf(file):
    try:
        if file is not None: 
            return 'Successfully uploaded!'
        else:
            return "No file uploaded."

    except Exception as e:
        return f"An error occurred: {e}"



    
 
with gr.Blocks() as demo:  
    
    btn = gr.UploadButton("Upload a PDF", file_types=[".pdf"])
    output = gr.Textbox(label="Output Box")
    chatbot = gr.Chatbot(height=240)
    
    with gr.Row():
        with gr.Column(scale=0.70):
            txt = gr.Textbox(
                show_label=False,
                placeholder="Enter a question",
            ) 

 
    # Event handler for uploading a PDF
    btn.upload(fn=upload_pdf, inputs=[btn], outputs=[output])
    txt.submit(run_query, [btn, chatbot, txt], [chatbot, txt])
    #.then(
            # generate_response, inputs =[chatbot,],outputs = chatbot,)


gr.close_all()
demo.launch(share=True)