File size: 4,126 Bytes
301614f
 
 
9035153
 
 
604b59c
 
 
 
6c36800
1ea407d
4627abd
2cd4e0a
 
 
 
058d9a5
 
2cd4e0a
 
 
604b59c
b0a8958
 
 
058d9a5
725d485
9035153
 
 
 
 
 
 
 
 
 
 
 
03e01d3
9035153
03e01d3
9035153
d99a408
9035153
 
b0a8958
725d485
93544b0
2a5a407
93544b0
 
725d485
93544b0
 
725d485
93544b0
2a5a407
93544b0
 
2a5a407
93544b0
2a5a407
93544b0
 
dffeb2d
93544b0
 
 
 
 
725d485
b0a8958
 
 
725d485
a969a6a
 
f80ac06
868e2fc
a8c254b
b24f482
a8c254b
53446f8
868e2fc
b24f482
e4c0c14
d99a408
 
53446f8
868e2fc
f80ac06
9035153
dffeb2d
911a8be
5573a68
911a8be
868e2fc
b0a8958
 
 
986cfd0
b0a8958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4627abd
725d485
911a8be
 
5573a68
911a8be
 
 
 
 
 
23d4171
2024184
dffeb2d
 
a610295
d99a408
dffeb2d
2024184
 
 
 
fc4d061
7471e3e
23d4171
7f9bf9b
2347d67
a610295
f80ac06
dffeb2d
 
7c1d20d
fc4d061
e554b8b
71db1e4
 
fc4d061
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import gradio as gr
from langchain.document_loaders import PDFMinerLoader, PyMuPDFLoader
from langchain.text_splitter import CharacterTextSplitter
import chromadb
import chromadb.config
from chromadb.config import Settings
from transformers import T5ForConditionalGeneration, AutoTokenizer
import torch
import uuid
from sentence_transformers import SentenceTransformer
import os


model_name = 'google/flan-t5-base'
model = T5ForConditionalGeneration.from_pretrained(model_name, device_map='auto', offload_folder="offload")
tokenizer = AutoTokenizer.from_pretrained(model_name)
print('flan read')


ST_name = 'sentence-transformers/sentence-t5-base'
st_model = SentenceTransformer(ST_name)
print('sentence read')

client = chromadb.Client()
collection = client.create_collection("test_db") 


def get_context(query_text, collection):
    query_emb = st_model.encode(query_text)
    query_response = collection.query(query_embeddings=query_emb.tolist(), n_results=4)
    context = query_response['documents'][0][0]
    context = context.replace('\n', ' ').replace('  ', ' ')
    return context

def local_query(query, context):
    t5query = """Using the available context, please answer the question. 
    If you aren't sure please say i don't know.
    Context: {}
    Question: {}
    """.format(context, query)

    inputs = tokenizer(t5query, return_tensors="pt")

    outputs = model.generate(**inputs, max_new_tokens=20)
 
    return tokenizer.batch_decode(outputs, skip_special_tokens=True)

def generate_langchain(btn):

    file_name = btn.name 
   
    loader = PDFMinerLoader(file_name)
    doc = loader.load()

    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
    texts = text_splitter.split_documents(doc)

    texts = [i.page_content for i in texts]

    doc_emb = st_model.encode(texts)
    doc_emb = doc_emb.tolist()

    ids = [str(uuid.uuid1()) for _ in doc_emb]

    client = chromadb.Client()
    collection = client.create_collection("test_db") 
    
    collection.add(
        embeddings=doc_emb,
        documents=texts,
        ids=ids
    )

    return collection

def run_query(btn, history, query):

    # context = get_context(query, collection)
    context  = 'My name is damla'
    
    print('calling local query')
    result = local_query(query, context)

    
    print('printing result after call back')
    print(result)

    history.append((query, str(result[0])))
        

    print('printing history')
    print(history)
    return  history, ""



def upload_pdf(file):
    try:
        if file is not None: 

            global collection
            
            file_name = file.name 
   
            loader = PDFMinerLoader(file_name)
            doc = loader.load()
        
            text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
            texts = text_splitter.split_documents(doc)
        
            texts = [i.page_content for i in texts]
        
            doc_emb = st_model.encode(texts)
            doc_emb = doc_emb.tolist()
        
            ids = [str(uuid.uuid1()) for _ in doc_emb]
        
            
            collection.add(
                embeddings=doc_emb,
                documents=texts,
                ids=ids
            )

    
            return 'Successfully uploaded!'
        else:
            return "No file uploaded."

    except Exception as e:
        return f"An error occurred: {e}"



    
 
with gr.Blocks() as demo:  
    
    btn = gr.UploadButton("Upload a PDF", file_types=[".pdf"])
    output = gr.Textbox(label="Output Box")
    chatbot = gr.Chatbot(height=240)
    
    with gr.Row():
        with gr.Column(scale=0.70):
            txt = gr.Textbox(
                show_label=False,
                placeholder="Enter a question",
            ) 

 
    # Event handler for uploading a PDF
    btn.upload(fn=upload_pdf, inputs=[btn], outputs=[output])
    txt.submit(run_query, [btn, chatbot, txt], [chatbot, txt])
    #.then(
            # generate_response, inputs =[chatbot,],outputs = chatbot,)


gr.close_all()
# demo.launch(share=True)
demo.queue().launch()