File size: 4,348 Bytes
301614f
 
 
9035153
 
 
604b59c
 
 
 
6c36800
1ea407d
822a50d
 
 
 
 
 
 
 
 
 
0df69fa
822a50d
 
 
 
 
 
 
 
 
058d9a5
 
2cd4e0a
 
0df69fa
604b59c
b0a8958
0df69fa
b0a8958
058d9a5
d121146
 
9035153
 
 
 
 
 
 
822a50d
 
 
 
 
 
 
 
 
 
 
 
 
0df69fa
9035153
 
 
822a50d
 
 
 
 
 
 
 
 
 
 
 
03e01d3
822a50d
9035153
725d485
2a5a407
d121146
b0a8958
 
725d485
0df69fa
 
 
 
 
 
 
 
 
 
 
 
 
 
f80ac06
9035153
dffeb2d
911a8be
5573a68
911a8be
868e2fc
b0a8958
 
 
986cfd0
b0a8958
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4627abd
725d485
911a8be
 
5573a68
911a8be
 
 
 
0df69fa
 
 
2024184
dffeb2d
 
0df69fa
59b084c
 
 
 
 
 
 
 
 
7f9bf9b
0df69fa
 
 
 
 
7c1d20d
fc4d061
e554b8b
0df69fa
a4185e2
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import gradio as gr
from langchain.document_loaders import PDFMinerLoader, PyMuPDFLoader
from langchain.text_splitter import CharacterTextSplitter
import chromadb
import chromadb.config
from chromadb.config import Settings
from transformers import T5ForConditionalGeneration, AutoTokenizer
import torch
import uuid
from sentence_transformers import SentenceTransformer
import os

from transformers import AutoTokenizer, AutoModelForCausalLM
import transformers
import torch

model_name  = "tiiuae/falcon-40b-instruct"

# model_name = 'google/flan-t5-base'
# model = T5ForConditionalGeneration.from_pretrained(model_name, device_map='auto', offload_folder="offload")
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# print('flan read')

tokenizer = AutoTokenizer.from_pretrained(model)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype=torch.bfloat16,
    trust_remote_code=True,
    device_map="auto",
)


ST_name = 'sentence-transformers/sentence-t5-base'
st_model = SentenceTransformer(ST_name)
print('sentence read')

client = chromadb.Client()
collection = client.create_collection("test_db") 


def get_context(query_text):
    
    query_emb = st_model.encode(query_text)
    query_response = collection.query(query_embeddings=query_emb.tolist(), n_results=4)
    context = query_response['documents'][0][0]
    context = context.replace('\n', ' ').replace('  ', ' ')
    return context

def local_query(query, context):
    # t5query = """Using the available context, please answer the question. 
    # If you aren't sure please say i don't know.
    # Context: {}
    # Question: {}
    # """.format(context, query)

    # inputs = tokenizer(t5query, return_tensors="pt")

    # outputs = model.generate(**inputs, max_new_tokens=20)
 
    # return tokenizer.batch_decode(outputs, skip_special_tokens=True)

    context_query = """Using the available context, please answer the question. 
    If you aren't sure please say i don't know.
    Context: {}
    Question: {}
    """.format(context, query)
    
    sequences = pipeline(
    context_query,
    max_length=200,
    do_sample=True,
    top_k=10,
    num_return_sequences=1,
    eos_token_id=tokenizer.eos_token_id,
    )
    
    # for seq in sequences:
    #     print(f"Result: {seq['generated_text']}")

    return seq['generated_text']


   
   

def run_query(btn, history, query):

    context = get_context(query)
    
    print('calling local query')
    result = local_query(query, context)

    
    print('printing result after call back')
    print(result)

    history.append((query, str(result[0])))
        

    print('printing history')
    print(history)
    return  history, ""



def upload_pdf(file):
    try:
        if file is not None: 

            global collection
            
            file_name = file.name 
   
            loader = PDFMinerLoader(file_name)
            doc = loader.load()
        
            text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
            texts = text_splitter.split_documents(doc)
        
            texts = [i.page_content for i in texts]
        
            doc_emb = st_model.encode(texts)
            doc_emb = doc_emb.tolist()
        
            ids = [str(uuid.uuid1()) for _ in doc_emb]
        
            
            collection.add(
                embeddings=doc_emb,
                documents=texts,
                ids=ids
            )

    
            return 'Successfully uploaded!'
        else:
            return "No file uploaded."

    except Exception as e:
        return f"An error occurred: {e}"



    
 
with gr.Blocks() as demo:  
    
    btn = gr.UploadButton("Upload a PDF", file_types=[".pdf"])
    output = gr.Textbox(label="Output Box")
    chatbot = gr.Chatbot(height=240)
    
    with gr.Row():
        with gr.Column(scale=0.70):
            txt = gr.Textbox(
                show_label=False,
                placeholder="Enter a question",
            ) 

 
    # Event handler for uploading a PDF
    btn.upload(fn=upload_pdf, inputs=[btn], outputs=[output])
    txt.submit(run_query, [btn, chatbot, txt], [chatbot, txt])
    #.then(
            # generate_response, inputs =[chatbot,],outputs = chatbot,)


gr.close_all()
# demo.launch(share=True)
demo.queue().launch()