File size: 2,905 Bytes
301614f
 
 
9035153
 
 
604b59c
 
 
 
 
6c36800
604b59c
5573a68
 
 
 
058d9a5
 
5573a68
 
 
604b59c
058d9a5
9035153
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5573a68
301614f
 
 
 
 
 
 
544ea93
301614f
9035153
 
 
 
 
 
 
 
 
 
 
42d5877
9035153
 
5573a68
 
911a8be
 
 
5573a68
911a8be
 
 
 
 
 
23d4171
 
 
 
 
 
911a8be
 
5573a68
911a8be
 
 
 
 
 
23d4171
 
7f9bf9b
9035153
7f9bf9b
f05dba6
058d9a5
 
 
 
 
f05dba6
 
 
058d9a5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
import gradio as gr
from langchain.document_loaders import PDFMinerLoader, PyMuPDFLoader
from langchain.text_splitter import CharacterTextSplitter
import chromadb
import chromadb.config
from chromadb.config import Settings
from transformers import T5ForConditionalGeneration, AutoTokenizer
import torch
import gradio as gr
import uuid
from sentence_transformers import SentenceTransformer
import os

# model_name = 'google/flan-t5-base'
# model = T5ForConditionalGeneration.from_pretrained(model_name, device_map='auto', offload_folder="offload")
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# print('flan read')


# ST_name = 'sentence-transformers/sentence-t5-base'
# st_model = SentenceTransformer(ST_name)
# print('sentence read')


def get_context(query_text):
    query_emb = st_model.encode(query_text)
    query_response = collection.query(query_embeddings=query_emb.tolist(), n_results=4)
    context = query_response['documents'][0][0]
    context = context.replace('\n', ' ').replace('  ', ' ')
    return context

def local_query(query, context):
    t5query = """Using the available context, please answer the question. 
    If you aren't sure please say i don't know.
    Context: {}
    Question: {}
    """.format(context, query)
    
    inputs = tokenizer(t5query, return_tensors="pt")
    outputs = model.generate(**inputs, max_new_tokens=20)
    
    return tokenizer.batch_decode(outputs, skip_special_tokens=True)

def run_query(query):
    context = get_context(query)
    result = local_query(query, context)
    return result


def load_document(pdf_filename):

    loader = PDFMinerLoader(pdf_filename)
    doc = loader.load()

    text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
    texts = text_splitter.split_documents(doc)

    texts = [i.page_content for i in texts]

    doc_emb = st_model.encode(texts)
    doc_emb = doc_emb.tolist()

    ids = [str(uuid.uuid1()) for _ in doc_emb]

    client = chromadb.Client()
    collection = client.create_collection("test_db") 
    
    collection.add(
        embeddings=doc_emb,
        documents=texts,
        ids=ids
    )

    return 'Success'

import gradio as gr
import os

def upload_pdf(file):
    try:
        # Check if the file is not None before accessing its attributes
        if file is not None:
            # Save the uploaded file
            file_name = file.name

            pdf_filename = os.path.basename(file_path)

            # messsage = load_document(pdf_filename) 
            
            messsage = 'success'
            return messsage
        else:
            return "No file uploaded."

    except Exception as e:
        return f"An error occurred: {e}"



    
 

 

 
iface = gr.Interface(
    fn=upload_pdf,
    inputs="file",
    outputs="text",
    title="PDF File Uploader",
    description="Upload a PDF file and get its filename.",
)

iface.launch()