import gradio as gr import torch from diffusers import StableDiffusionPipeline from transformers import pipeline device = "cuda" if torch.cuda.is_available() else "cpu" text_generator = pipeline( "text-generation", model="openchat/openchat-3.5-0106", device=device ) summarizer = pipeline( "summarization", model="sshleifer/distilbart-cnn-12-6", device=device ) title_generator = pipeline( "text2text-generation", model="fabiochiu/t5-small-medium-title-generation", device=device, ) stable_diffusion = StableDiffusionPipeline.from_pretrained("prompthero/openjourney-v4") stable_diffusion.to(device) def generate_blog_post(query): # Generate the article print("Generating article.") article = text_generator(query, max_length=500, num_return_sequences=1)[0][ "generated_text" ] print(f"{article = }") # Generate a title for the article print("Generating the title.") title = title_generator(article, max_length=30, num_return_sequences=1)[0][ "generated_text" ] print(f"{title = }") # Generate a cover image using Stable Diffusion print("Generating the cover.") cover = stable_diffusion(title, num_inference_steps=20, guidance_scale=7.5).images[ 0 ] # Generate a summary of the article print("Generating the summary.") summary = summarizer(article, max_length=100, min_length=30, do_sample=False)[0][ "summary_text" ] print(f"{summary = }") return title, cover, summary, article with gr.Blocks() as iface: gr.Markdown("# Blog Post Generator") gr.Markdown( "Enter a topic, and I'll generate a blog post with a title, cover image, and summary!" ) with gr.Row(): topic_input = gr.Textbox(lines=2, placeholder="Enter your blog post topic...") generate_button = gr.Button("Generate Blog Post", size="sm") with gr.Row(): with gr.Column(scale=2): title_output = gr.Textbox(label="Title") article_output = gr.Textbox(label="Article", lines=10) with gr.Column(scale=1): cover_output = gr.Image(label="Cover") summary_output = gr.Textbox(label="Summary", lines=5) generate_button.click( generate_blog_post, inputs=topic_input, outputs=[title_output, cover_output, summary_output, article_output], ) iface.launch()