import gradio as gr from datasets import load_dataset from transformers import pipeline # Load the WikiArt dataset in streaming mode dataset = load_dataset("huggan/wikiart", streaming=True) # Function to display artwork details def display_artwork(index): for i, record in enumerate(dataset["train"]): if i == index: return record["image"], f"Welcome to the Gallery\n\nTitle: {record['title']}\nArtist: {record['artist']}\nStyle: {record['style']}\nGenre: {record['genre']}\n\nStep into the world of art and explore its details." # Function to filter artworks based on metadata def filter_artworks(artist=None, genre=None, style=None): results = [] for record in dataset["train"]: if (artist is None or record["artist"] == artist) and \ (genre is None or record["genre"] == genre) and \ (style is None or record["style"] == style): results.append(record) return results # Function to display filtered artworks def display_filtered_artworks(artist, genre, style): filtered_results = filter_artworks(artist, genre, style) return [(r["image"], f"Title: {r['title']}\nArtist: {r['artist']}\nStyle: {r['style']}\nGenre: {r['genre']}") for r in filtered_results] # Chatbot functionality for museum guide persona chatbot = pipeline("text-generation", model="gpt-4") def museum_guide_query(prompt): return chatbot(prompt, max_length=100, num_return_sequences=1)[0]["generated_text"] # Gradio interfaces artwork_interface = gr.Interface( fn=display_artwork, inputs=gr.Number(label="Artwork Index"), outputs=[gr.Image(label="Artwork"), gr.Text(label="Details")], title="Exhibit AI - Virtual Art Gallery" ) filter_interface = gr.Interface( fn=display_filtered_artworks, inputs=[gr.Text(label="Artist"), gr.Text(label="Genre"), gr.Text(label="Style")], outputs=gr.Gallery(label="Filtered Artworks", caption="Explore artworks based on your preferences."), title="Filter Artworks" ) chatbot_interface = gr.Interface( fn=museum_guide_query, inputs=gr.Textbox(label="Ask the Museum Guide"), outputs=gr.Text(label="Guide Response"), title="Museum Guide Chatbot" ) # Launch Gradio Blocks to combine all interfaces def launch_app(): with gr.Blocks() as demo: gr.Markdown("# Exhibit AI - Virtual Art Gallery") gr.TabbedInterface( [artwork_interface, filter_interface, chatbot_interface], ["View Artwork", "Filter Artworks", "Ask the Museum Guide"] ) demo.launch() if __name__ == "__main__": launch_app()