Update app.py
Browse files
app.py
CHANGED
|
@@ -1,158 +1,90 @@
|
|
| 1 |
import os
|
| 2 |
-
import torch
|
| 3 |
-
from unsloth import FastLanguageModel, is_bfloat16_supported
|
| 4 |
-
from trl import SFTTrainer
|
| 5 |
-
from transformers import TrainingArguments
|
| 6 |
-
from datasets import load_dataset
|
| 7 |
import gradio as gr
|
| 8 |
-
import
|
| 9 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
dtype = None
|
| 13 |
-
load_in_4bit = True
|
| 14 |
hf_token = os.getenv("HF_TOKEN")
|
| 15 |
-
current_num = os.getenv("NUM")
|
| 16 |
-
|
| 17 |
-
print(f"stage ${current_num}")
|
| 18 |
-
|
| 19 |
-
api = HfApi(token=hf_token)
|
| 20 |
-
# models = f"dad1909/cybersentinal-2.0-{current_num}"
|
| 21 |
-
model_base = "unsloth/gemma-2-27b-bnb-4bit"
|
| 22 |
-
|
| 23 |
-
print("Starting model and tokenizer loading...")
|
| 24 |
-
|
| 25 |
-
# Load the model and tokenizer
|
| 26 |
-
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 27 |
-
model_name=model_base,
|
| 28 |
-
max_seq_length=max_seq_length,
|
| 29 |
-
dtype=dtype,
|
| 30 |
-
load_in_4bit=load_in_4bit,
|
| 31 |
-
token=hf_token
|
| 32 |
-
)
|
| 33 |
-
|
| 34 |
-
print("Model and tokenizer loaded successfully.")
|
| 35 |
-
|
| 36 |
-
print("Configuring PEFT model...")
|
| 37 |
-
model = FastLanguageModel.get_peft_model(
|
| 38 |
-
model,
|
| 39 |
-
r=16,
|
| 40 |
-
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
| 41 |
-
lora_alpha=16,
|
| 42 |
-
lora_dropout=0,
|
| 43 |
-
bias="none",
|
| 44 |
-
use_gradient_checkpointing="unsloth",
|
| 45 |
-
random_state=3407,
|
| 46 |
-
use_rslora=False,
|
| 47 |
-
loftq_config=None,
|
| 48 |
-
)
|
| 49 |
-
print("PEFT model configured.")
|
| 50 |
|
| 51 |
-
#
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
### Code Snippet:
|
| 65 |
{}
|
| 66 |
-
### Vulnerability
|
| 67 |
-
{}"
|
| 68 |
}
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
outputs = examples["output"]
|
| 85 |
-
texts = []
|
| 86 |
-
|
| 87 |
-
for instruction, output in zip(instructions, outputs):
|
| 88 |
-
prompt_type = detect_prompt_type(instruction)
|
| 89 |
-
if prompt_type in alpaca_prompt:
|
| 90 |
-
prompt = alpaca_prompt[prompt_type].format(instruction, output)
|
| 91 |
-
else:
|
| 92 |
-
prompt = instruction + "\n\n" + output
|
| 93 |
-
text = prompt + EOS_TOKEN
|
| 94 |
-
texts.append(text)
|
| 95 |
-
|
| 96 |
-
return {"text": texts}
|
| 97 |
-
|
| 98 |
-
print("Loading dataset...")
|
| 99 |
-
dataset = load_dataset("dad1909/DCSV", split="train")
|
| 100 |
-
print("Dataset loaded successfully.")
|
| 101 |
-
|
| 102 |
-
print("Applying formatting function to the dataset...")
|
| 103 |
-
dataset = dataset.map(formatting_prompts_func, batched=True)
|
| 104 |
-
print("Formatting function applied.")
|
| 105 |
-
|
| 106 |
-
print("Initializing trainer...")
|
| 107 |
-
trainer = SFTTrainer(
|
| 108 |
-
model=model,
|
| 109 |
-
tokenizer=tokenizer,
|
| 110 |
-
train_dataset=dataset,
|
| 111 |
-
dataset_text_field="text",
|
| 112 |
-
max_seq_length=max_seq_length,
|
| 113 |
-
dataset_num_proc=2,
|
| 114 |
-
packing=False,
|
| 115 |
-
args=TrainingArguments(
|
| 116 |
-
per_device_train_batch_size=1,
|
| 117 |
-
gradient_accumulation_steps=1,
|
| 118 |
-
learning_rate=2e-4,
|
| 119 |
-
fp16=not is_bfloat16_supported(),
|
| 120 |
-
bf16=is_bfloat16_supported(),
|
| 121 |
-
warmup_steps=5,
|
| 122 |
-
logging_steps=10,
|
| 123 |
-
max_steps=100,
|
| 124 |
-
optim="adamw_8bit",
|
| 125 |
-
weight_decay=0.01,
|
| 126 |
-
lr_scheduler_type="linear",
|
| 127 |
-
seed=3407,
|
| 128 |
-
output_dir="outputs"
|
| 129 |
-
),
|
| 130 |
-
)
|
| 131 |
-
print("Trainer initialized.")
|
| 132 |
-
|
| 133 |
-
print("Starting training...")
|
| 134 |
-
trainer_stats = trainer.train()
|
| 135 |
-
print("Training completed.")
|
| 136 |
-
|
| 137 |
-
num = int(current_num)
|
| 138 |
-
num += 1
|
| 139 |
-
|
| 140 |
-
uploads_models = f"cybersentinal-2.0-{str(num)}"
|
| 141 |
-
|
| 142 |
-
up = "sentinal-3.1-70B"
|
| 143 |
-
|
| 144 |
-
print("Saving the trained model...")
|
| 145 |
-
model.save_pretrained_merged("model", tokenizer, save_method="merged_16bit")
|
| 146 |
-
print("Model saved successfully.")
|
| 147 |
-
|
| 148 |
-
print("Pushing the model to the hub...")
|
| 149 |
-
model.push_to_hub_merged(
|
| 150 |
-
up,
|
| 151 |
-
tokenizer,
|
| 152 |
-
save_method="merged_16bit",
|
| 153 |
-
token=hf_token
|
| 154 |
)
|
| 155 |
-
print("Model pushed to hub successfully.")
|
| 156 |
|
| 157 |
-
|
| 158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import TextStreamer, AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
import spaces
|
| 6 |
+
|
| 7 |
+
# Define the model configurations
|
| 8 |
+
model_configs = {
|
| 9 |
+
"CyberSentinel": {
|
| 10 |
+
"model_name": "dad1909/cybersentinal-2.0",
|
| 11 |
+
"max_seq_length": 1028,
|
| 12 |
+
"dtype": torch.float16,
|
| 13 |
+
"load_in_4bit": True
|
| 14 |
+
}
|
| 15 |
+
}
|
| 16 |
|
| 17 |
+
# Hugging Face token
|
|
|
|
|
|
|
| 18 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
# Load the model when the application starts
|
| 21 |
+
loaded_models = {}
|
| 22 |
+
|
| 23 |
+
def load_model(selected_model):
|
| 24 |
+
if selected_model not in loaded_models:
|
| 25 |
+
config = model_configs[selected_model]
|
| 26 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 27 |
+
config["model_name"],
|
| 28 |
+
torch_dtype=config["dtype"],
|
| 29 |
+
device_map="auto",
|
| 30 |
+
use_auth_token=hf_token
|
| 31 |
+
)
|
| 32 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
| 33 |
+
config["model_name"],
|
| 34 |
+
use_auth_token=hf_token
|
| 35 |
+
)
|
| 36 |
+
loaded_models[selected_model] = (model, tokenizer)
|
| 37 |
+
return loaded_models[selected_model]
|
| 38 |
+
|
| 39 |
+
alpaca_prompts = {
|
| 40 |
+
"information": "Give me information about the following topic: {}",
|
| 41 |
+
"vulnerable": """Identify the line of code that is vulnerable and describe the type of software vulnerability.
|
| 42 |
### Code Snippet:
|
| 43 |
{}
|
| 44 |
+
### Vulnerability Description:""",
|
| 45 |
+
"Chat": "{}"
|
| 46 |
}
|
| 47 |
|
| 48 |
+
@spaces.GPU(duration=100)
|
| 49 |
+
def predict(selected_model, prompt, prompt_type, max_length=128):
|
| 50 |
+
model, tokenizer = load_model(selected_model)
|
| 51 |
+
selected_prompt = alpaca_prompts[prompt_type]
|
| 52 |
+
formatted_prompt = selected_prompt.format(prompt)
|
| 53 |
+
inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda")
|
| 54 |
+
text_streamer = TextStreamer(tokenizer)
|
| 55 |
+
output = model.generate(**inputs, streamer=text_streamer, max_new_tokens=max_length)
|
| 56 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
| 57 |
+
|
| 58 |
+
theme = gr.themes.Default(
|
| 59 |
+
primary_hue=gr.themes.colors.rose,
|
| 60 |
+
secondary_hue=gr.themes.colors.blue,
|
| 61 |
+
font=gr.themes.GoogleFont("Source Sans Pro")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
)
|
|
|
|
| 63 |
|
| 64 |
+
load_model("CyberSentinel")
|
| 65 |
+
|
| 66 |
+
with gr.Blocks(theme=theme) as demo:
|
| 67 |
+
selected_model = gr.Dropdown(choices=list(model_configs.keys()), value="CyberSentinel", label="Model")
|
| 68 |
+
prompt = gr.Textbox(lines=5, placeholder="Enter your code snippet or topic here...", label="Prompt")
|
| 69 |
+
prompt_type = gr.Dropdown(choices=list(alpaca_prompts.keys()), value="Chat", label="Prompt Type")
|
| 70 |
+
max_length = gr.Slider(minimum=128, maximum=512, step=128, value=128, label="Max Length")
|
| 71 |
+
generated_text = gr.Textbox(label="Generated Text")
|
| 72 |
+
|
| 73 |
+
generate_button = gr.Button("Generate")
|
| 74 |
+
|
| 75 |
+
generate_button.click(predict, inputs=[selected_model, prompt, prompt_type, max_length], outputs=generated_text)
|
| 76 |
+
|
| 77 |
+
gr.Examples(
|
| 78 |
+
examples=[
|
| 79 |
+
["CyberSentinel", "What is SQL injection?", "information", 128],
|
| 80 |
+
["CyberSentinel", "$buff = 'A' x 10000;\nopen(myfile, '>>PASS.PK2');\nprint myfile $buff;\nclose(myfile);", "vulnerable", 128],
|
| 81 |
+
["CyberSentinel", "Can you tell me a joke?", "Chat", 128]
|
| 82 |
+
],
|
| 83 |
+
inputs=[selected_model, prompt, prompt_type, max_length]
|
| 84 |
+
)
|
| 85 |
+
|
| 86 |
+
demo.queue(default_concurrency_limit=20).launch(
|
| 87 |
+
server_name="0.0.0.0",
|
| 88 |
+
allowed_paths=["/"],
|
| 89 |
+
share=True
|
| 90 |
+
)
|