Update app.py
Browse files
app.py
CHANGED
@@ -1,158 +1,90 @@
|
|
1 |
import os
|
2 |
-
import torch
|
3 |
-
from unsloth import FastLanguageModel, is_bfloat16_supported
|
4 |
-
from trl import SFTTrainer
|
5 |
-
from transformers import TrainingArguments
|
6 |
-
from datasets import load_dataset
|
7 |
import gradio as gr
|
8 |
-
import
|
9 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
-
|
12 |
-
dtype = None
|
13 |
-
load_in_4bit = True
|
14 |
hf_token = os.getenv("HF_TOKEN")
|
15 |
-
current_num = os.getenv("NUM")
|
16 |
-
|
17 |
-
print(f"stage ${current_num}")
|
18 |
-
|
19 |
-
api = HfApi(token=hf_token)
|
20 |
-
# models = f"dad1909/cybersentinal-2.0-{current_num}"
|
21 |
-
model_base = "unsloth/gemma-2-27b-bnb-4bit"
|
22 |
-
|
23 |
-
print("Starting model and tokenizer loading...")
|
24 |
-
|
25 |
-
# Load the model and tokenizer
|
26 |
-
model, tokenizer = FastLanguageModel.from_pretrained(
|
27 |
-
model_name=model_base,
|
28 |
-
max_seq_length=max_seq_length,
|
29 |
-
dtype=dtype,
|
30 |
-
load_in_4bit=load_in_4bit,
|
31 |
-
token=hf_token
|
32 |
-
)
|
33 |
-
|
34 |
-
print("Model and tokenizer loaded successfully.")
|
35 |
-
|
36 |
-
print("Configuring PEFT model...")
|
37 |
-
model = FastLanguageModel.get_peft_model(
|
38 |
-
model,
|
39 |
-
r=16,
|
40 |
-
target_modules=["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"],
|
41 |
-
lora_alpha=16,
|
42 |
-
lora_dropout=0,
|
43 |
-
bias="none",
|
44 |
-
use_gradient_checkpointing="unsloth",
|
45 |
-
random_state=3407,
|
46 |
-
use_rslora=False,
|
47 |
-
loftq_config=None,
|
48 |
-
)
|
49 |
-
print("PEFT model configured.")
|
50 |
|
51 |
-
#
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
64 |
### Code Snippet:
|
65 |
{}
|
66 |
-
### Vulnerability
|
67 |
-
{}"
|
68 |
}
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
outputs = examples["output"]
|
85 |
-
texts = []
|
86 |
-
|
87 |
-
for instruction, output in zip(instructions, outputs):
|
88 |
-
prompt_type = detect_prompt_type(instruction)
|
89 |
-
if prompt_type in alpaca_prompt:
|
90 |
-
prompt = alpaca_prompt[prompt_type].format(instruction, output)
|
91 |
-
else:
|
92 |
-
prompt = instruction + "\n\n" + output
|
93 |
-
text = prompt + EOS_TOKEN
|
94 |
-
texts.append(text)
|
95 |
-
|
96 |
-
return {"text": texts}
|
97 |
-
|
98 |
-
print("Loading dataset...")
|
99 |
-
dataset = load_dataset("dad1909/DCSV", split="train")
|
100 |
-
print("Dataset loaded successfully.")
|
101 |
-
|
102 |
-
print("Applying formatting function to the dataset...")
|
103 |
-
dataset = dataset.map(formatting_prompts_func, batched=True)
|
104 |
-
print("Formatting function applied.")
|
105 |
-
|
106 |
-
print("Initializing trainer...")
|
107 |
-
trainer = SFTTrainer(
|
108 |
-
model=model,
|
109 |
-
tokenizer=tokenizer,
|
110 |
-
train_dataset=dataset,
|
111 |
-
dataset_text_field="text",
|
112 |
-
max_seq_length=max_seq_length,
|
113 |
-
dataset_num_proc=2,
|
114 |
-
packing=False,
|
115 |
-
args=TrainingArguments(
|
116 |
-
per_device_train_batch_size=1,
|
117 |
-
gradient_accumulation_steps=1,
|
118 |
-
learning_rate=2e-4,
|
119 |
-
fp16=not is_bfloat16_supported(),
|
120 |
-
bf16=is_bfloat16_supported(),
|
121 |
-
warmup_steps=5,
|
122 |
-
logging_steps=10,
|
123 |
-
max_steps=100,
|
124 |
-
optim="adamw_8bit",
|
125 |
-
weight_decay=0.01,
|
126 |
-
lr_scheduler_type="linear",
|
127 |
-
seed=3407,
|
128 |
-
output_dir="outputs"
|
129 |
-
),
|
130 |
-
)
|
131 |
-
print("Trainer initialized.")
|
132 |
-
|
133 |
-
print("Starting training...")
|
134 |
-
trainer_stats = trainer.train()
|
135 |
-
print("Training completed.")
|
136 |
-
|
137 |
-
num = int(current_num)
|
138 |
-
num += 1
|
139 |
-
|
140 |
-
uploads_models = f"cybersentinal-2.0-{str(num)}"
|
141 |
-
|
142 |
-
up = "sentinal-3.1-70B"
|
143 |
-
|
144 |
-
print("Saving the trained model...")
|
145 |
-
model.save_pretrained_merged("model", tokenizer, save_method="merged_16bit")
|
146 |
-
print("Model saved successfully.")
|
147 |
-
|
148 |
-
print("Pushing the model to the hub...")
|
149 |
-
model.push_to_hub_merged(
|
150 |
-
up,
|
151 |
-
tokenizer,
|
152 |
-
save_method="merged_16bit",
|
153 |
-
token=hf_token
|
154 |
)
|
155 |
-
print("Model pushed to hub successfully.")
|
156 |
|
157 |
-
|
158 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
|
|
|
|
|
|
|
|
|
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
+
from transformers import TextStreamer, AutoModelForCausalLM, AutoTokenizer
|
5 |
+
import spaces
|
6 |
+
|
7 |
+
# Define the model configurations
|
8 |
+
model_configs = {
|
9 |
+
"CyberSentinel": {
|
10 |
+
"model_name": "dad1909/cybersentinal-2.0",
|
11 |
+
"max_seq_length": 1028,
|
12 |
+
"dtype": torch.float16,
|
13 |
+
"load_in_4bit": True
|
14 |
+
}
|
15 |
+
}
|
16 |
|
17 |
+
# Hugging Face token
|
|
|
|
|
18 |
hf_token = os.getenv("HF_TOKEN")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
+
# Load the model when the application starts
|
21 |
+
loaded_models = {}
|
22 |
+
|
23 |
+
def load_model(selected_model):
|
24 |
+
if selected_model not in loaded_models:
|
25 |
+
config = model_configs[selected_model]
|
26 |
+
model = AutoModelForCausalLM.from_pretrained(
|
27 |
+
config["model_name"],
|
28 |
+
torch_dtype=config["dtype"],
|
29 |
+
device_map="auto",
|
30 |
+
use_auth_token=hf_token
|
31 |
+
)
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
33 |
+
config["model_name"],
|
34 |
+
use_auth_token=hf_token
|
35 |
+
)
|
36 |
+
loaded_models[selected_model] = (model, tokenizer)
|
37 |
+
return loaded_models[selected_model]
|
38 |
+
|
39 |
+
alpaca_prompts = {
|
40 |
+
"information": "Give me information about the following topic: {}",
|
41 |
+
"vulnerable": """Identify the line of code that is vulnerable and describe the type of software vulnerability.
|
42 |
### Code Snippet:
|
43 |
{}
|
44 |
+
### Vulnerability Description:""",
|
45 |
+
"Chat": "{}"
|
46 |
}
|
47 |
|
48 |
+
@spaces.GPU(duration=100)
|
49 |
+
def predict(selected_model, prompt, prompt_type, max_length=128):
|
50 |
+
model, tokenizer = load_model(selected_model)
|
51 |
+
selected_prompt = alpaca_prompts[prompt_type]
|
52 |
+
formatted_prompt = selected_prompt.format(prompt)
|
53 |
+
inputs = tokenizer([formatted_prompt], return_tensors="pt").to("cuda")
|
54 |
+
text_streamer = TextStreamer(tokenizer)
|
55 |
+
output = model.generate(**inputs, streamer=text_streamer, max_new_tokens=max_length)
|
56 |
+
return tokenizer.decode(output[0], skip_special_tokens=True)
|
57 |
+
|
58 |
+
theme = gr.themes.Default(
|
59 |
+
primary_hue=gr.themes.colors.rose,
|
60 |
+
secondary_hue=gr.themes.colors.blue,
|
61 |
+
font=gr.themes.GoogleFont("Source Sans Pro")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
)
|
|
|
63 |
|
64 |
+
load_model("CyberSentinel")
|
65 |
+
|
66 |
+
with gr.Blocks(theme=theme) as demo:
|
67 |
+
selected_model = gr.Dropdown(choices=list(model_configs.keys()), value="CyberSentinel", label="Model")
|
68 |
+
prompt = gr.Textbox(lines=5, placeholder="Enter your code snippet or topic here...", label="Prompt")
|
69 |
+
prompt_type = gr.Dropdown(choices=list(alpaca_prompts.keys()), value="Chat", label="Prompt Type")
|
70 |
+
max_length = gr.Slider(minimum=128, maximum=512, step=128, value=128, label="Max Length")
|
71 |
+
generated_text = gr.Textbox(label="Generated Text")
|
72 |
+
|
73 |
+
generate_button = gr.Button("Generate")
|
74 |
+
|
75 |
+
generate_button.click(predict, inputs=[selected_model, prompt, prompt_type, max_length], outputs=generated_text)
|
76 |
+
|
77 |
+
gr.Examples(
|
78 |
+
examples=[
|
79 |
+
["CyberSentinel", "What is SQL injection?", "information", 128],
|
80 |
+
["CyberSentinel", "$buff = 'A' x 10000;\nopen(myfile, '>>PASS.PK2');\nprint myfile $buff;\nclose(myfile);", "vulnerable", 128],
|
81 |
+
["CyberSentinel", "Can you tell me a joke?", "Chat", 128]
|
82 |
+
],
|
83 |
+
inputs=[selected_model, prompt, prompt_type, max_length]
|
84 |
+
)
|
85 |
+
|
86 |
+
demo.queue(default_concurrency_limit=20).launch(
|
87 |
+
server_name="0.0.0.0",
|
88 |
+
allowed_paths=["/"],
|
89 |
+
share=True
|
90 |
+
)
|