File size: 17,076 Bytes
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
 
 
 
 
 
 
 
 
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
8c9536c
ab759b9
ad16150
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
 
 
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
 
ad16150
 
 
9e4f7db
 
 
ad16150
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
ad16150
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import gradio as gr
import os
import torch
import whisper_timestamped as whisper_t
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
from transformers import WhisperForConditionalGeneration
from peft import PeftModel
import time
import re
import html
import json
import shutil
from fsp import analyze_audio, apply_censoring, default_curse_words, seconds_to_minutes
from datetime import datetime


###### Ideas ########
# - Javascript for toggling individual words to mute --> playright
# - Use LLM to determine what is "explicit" in the ouputs --> structured output?
# - Mute explicit nonvocal sounds: e.g., gun shots, sex scenes, etc.
# - Additional words to censor at the beginning screen ?


# Print the start time
print(f"Executing {os.path.basename(__file__)} at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")

################ Load models

## 1. Toxicity filter. Using the base version 
print('Loading toxicity classifier...')
tox_model = "cardiffnlp/twitter-roberta-large-sensitive-multilabel"

tox_tokenizer = AutoTokenizer.from_pretrained(tox_model)
tox_model = AutoModelForSequenceClassification.from_pretrained(tox_model)

device = 'cuda' if torch.cuda.is_available() else 'cpu'

tox_model.to(device)
tox_pipe = pipeline("text-classification", model=tox_model, tokenizer=tox_tokenizer, device=device, top_k=2)

## 2. Create our Whisper model from the LoRA weights
## Whisper_timestamped requires the entire model to be saved, this saves static storage space by only saving the lora config
def load_whisper_model(model_path, lora_config, base_model_name="openai/whisper-medium.en"):
    # If the model exists already we're good to go
    if os.path.exists('./whisper-medium-ft/model.safetensors'):
        print(f'Fine tuned model at {model_path} already exists')
        return
    
    print(f'Fine-tuned model not found. Creating model from LoRA configuration at {lora_config}')
    model = WhisperForConditionalGeneration.from_pretrained(base_model_name)

    model = PeftModel.from_pretrained(model, lora_config)

    model = model.merge_and_unload()
    model.save_pretrained(model_path, save_serialization=False)
    
    print(f'Whisper model from {lora_config} saved at {model_path}')
    return

# Where fsp.py expects to find our fine-tuned model
model_path = 'whisper-medium-ft'
lora_config = './lora_config'

load_whisper_model(model_path=model_path, lora_config=lora_config)

###### Helper functions #######

# Metadata display for the full transcriptions. Includes genius link if possible
def format_metadata_header(filename, metadata, explicit_word_count):
    title, artist, album, year = metadata.get('title', 'N/A'), metadata.get('artist', 'N/A'), metadata.get('album', 'N/A'), metadata.get('year', 'N/A')
    genius_url, wer_score = metadata.get('genius_url'), metadata.get('wer_score')
    genius_link = f"|| **[View lyrics on Genius]({genius_url})**" if genius_url else ""
    wer_display = f"| similarity score = {wer_score} (lower is better)" if wer_score and genius_url else ""
    
    status_message = ""
    if explicit_word_count == 0:
        status_message = "\n\n**βœ… No explicit content found in this track.**"
        
    return f"### Details for: *{filename}*\n**Artist:** {artist} | **Song:** {title} | **Album:** {album} ({year}) {genius_link} {wer_display}{status_message}"

# Creates the table of the transcription
def generate_static_transcript(transcript_data, initial_times):
    initial_times_set = {f"{t['start']}-{t['end']}" for t in initial_times}
    table_header = "<table><thead><tr><th style='width: 125px;'>Time</th><th>Line transcript</th><th>Explicit flag(s)</th></tr></thead><tbody>"
    table_rows = []

    all_lines = [" ".join([word['text'] for word in segment.get('line_words', [])]) for segment in transcript_data]

    explicit_results = []
    if all_lines:
        pipeline_outputs = tox_pipe(all_lines)
        
        for line_result in pipeline_outputs:
            flags = []

            for d in line_result:
                label = d['label']
                score = d['score']

                if score < 0.5: continue
                elif label == 'confilctual' or label == 'selfharm': flags.append('violence')
                elif label == 'profanity': flags.append('curse')
                elif label == 'drugs': flags.append('drugs')
                elif label == 'sex': flags.append('sex')

            explicit_results.append(flags)  

    for i, segment in enumerate(transcript_data):
        start_time_str, end_time_str = seconds_to_minutes(segment.get('start')), seconds_to_minutes(segment.get('end'))
        
        explicit_flag = ""

        if explicit_results:
            for flags in explicit_results[i]:
                if 'violence' in flags: explicit_flag += 'πŸ’₯'
                if 'curse' in flags: explicit_flag += '🀬'
                if 'drugs' in flags: explicit_flag += '🚬'
                if 'sex' in flags: explicit_flag += 'πŸ”ž'
        
        words_in_line = segment.get('line_words', [])
        formatted_words = []

        for word in words_in_line:
            word_id = f"{word['start']}-{word['end']}"

            if word_id in initial_times_set:
                formatted_words.append(f"<s>{html.escape(word['text'])}</s>")

            else:
                formatted_words.append(html.escape(word["text"]))

        formatted_line = " ".join(formatted_words)
        table_rows.append(f"<tr><td>{start_time_str} - {end_time_str}</td><td>{formatted_line}</td><td style='text-align:center'>{explicit_flag}</td></tr>")
        
    return table_header + "".join(table_rows) + "</tbody></table>"

# Execute the whisper model for transcription
def handle_batch_analysis(files, progress=gr.Progress()):
    if not files:
        raise gr.Error("Please upload one or more audio files.")

    yield gr.update(visible=False), gr.update(visible=False), gr.update(visible=True), None, None, None, None, None

    try:
        model, fine_tuned = (whisper_t.load_model(model_path, device=device), True)
    except Exception as e:
        raise gr.Error(f"Error loading fine-tuned Whisper model: {e}")

    all_results = {}
    num_files = len(files)
    for i, audio_file in enumerate(files):
        progress((i + 1) / num_files, desc=f"Analyzing File {i + 1} of {num_files}")
        filename = os.path.basename(audio_file.name)
        analysis_state = analyze_audio(audio_file.name, model, device, fine_tuned, progress=None)
        all_results[filename] = analysis_state
        # MODIFIED: Print filename to console after transcription
        print(f"Transcription complete for: {filename} (file {i+1} of {num_files})")

    file_list = list(all_results.keys())
    first_file_results = all_results[file_list[0]]
    explicit_count_first_file = len(first_file_results['initial_explicit_times'])
    header = format_metadata_header(file_list[0], first_file_results['metadata'], explicit_count_first_file)
    transcript_html = generate_static_transcript(first_file_results['transcript'], first_file_results['initial_explicit_times'])
    
    # Check if ANY file has explicit content to determine if the apply button should be active
    # If not, display no edits to make
    any_explicit_content = any(len(res['initial_explicit_times']) > 0 for res in all_results.values())
    if any_explicit_content:
        apply_button_update = gr.update(interactive=True, value="Apply all edits")
    else:
        apply_button_update = gr.update(interactive=False, value="No edits to make")

    yield (
        gr.update(visible=False), 
        gr.update(visible=True), 
        gr.update(visible=False), 
        all_results, 
        gr.update(choices=file_list, value=file_list[0]), 
        header, 
        transcript_html,
        apply_button_update
    )

# Selecting between different transcripts
def update_details_view(selected_filename, all_results):
    if not selected_filename or not all_results:
        return "", ""
    
    file_results = all_results[selected_filename]
    explicit_word_count = len(file_results['initial_explicit_times'])
    header = format_metadata_header(selected_filename, file_results['metadata'], explicit_word_count)
    transcript_html = generate_static_transcript(file_results['transcript'], file_results['initial_explicit_times'])
    return header, transcript_html

# Apply the edits to all songs
def handle_batch_finalization(all_results, progress=gr.Progress()):
    if not all_results:
        raise gr.Error("No active analysis session. Please process files first.")

    output_paths = []
    num_files = len(all_results)
    for i, (filename, analysis_state) in enumerate(all_results.items()):
        progress((i + 1) / num_files, desc=f"Applying edits {i + 1} of {num_files}")
        times_to_censor = analysis_state.get('initial_explicit_times', [])
        output_path = apply_censoring(analysis_state, times_to_censor, progress=None)
        if output_path:
            output_paths.append(output_path)
            
    status_message = f"βœ… **Success!** {len(output_paths)} of {len(all_results)} files have been censored."

    yield (
        gr.update(visible=True),
        gr.update(visible=False),
        gr.update(visible=True),
        status_message,
        output_paths,
        gr.update(visible=True),
        gr.update(visible=False)
    )

# Clear temp files and return to start
def return_to_start(all_results):
    """Cleans up all temporary directories and resets the UI to its initial state."""
    if all_results:
        for analysis_state in all_results.values():
            temp_dir_path = analysis_state.get('temp_dir')
            if temp_dir_path and os.path.exists(temp_dir_path):
                try:
                    shutil.rmtree(temp_dir_path)
                except Exception as e:
                    print(f"Error removing temporary directory {temp_dir_path}: {e}")
                    
    return (
        gr.update(visible=True),   # upload_view
        gr.update(visible=False),  # review_view
        gr.update(visible=False),  # final_view
        gr.update(visible=True, interactive=True),   # apply_button
        gr.update(choices=[], value=None, visible=True), # processed_files_selector
        None,                      # analysis_results_state
        "",                        # details_header
        "",                        # transcript_output
        "",                        # final_status_output
        None,                      # edited_files_output
        None                       # files_input (to clear it)
    )


######  Gradio UI   ########

## CSS for formatting
css = """
#main-container { max-width: 1250px; margin: auto; }
#main-container .prose { font-size: 15px !important; }
#upload-view { max-width: 60%; margin: 0 auto; }
#loading-view { min-height: 500px; display: flex; justify-content: center; align-items: center; }
#apply-button { background-color: #3d9c3e !important; color: white !important; }
#processed-files-radio { min-height: 300px; }
s { color: #d32f2f; text-decoration: line-through; }
"""

with gr.Blocks(theme=gr.themes.Soft(), title="FSP Finder", css=css) as demo:
    analysis_results_state = gr.State(None)

    # Main header. Persistent over all pages
    with gr.Column(elem_id="main-container"):
        gr.Markdown("# FSP Finder - AI-powered explicit content detector")
        gr.Markdown("Detects and automatically censors explicit content in music files. For source code and more details, visit our [github page](https://github.com/dclark202/auto-censoring).")
        gr.Markdown("---")

        # Upload page
        with gr.Column(visible=True) as upload_view:
            gr.Markdown("### How to use")
            gr.Markdown('- Upload one or more audio files using the box below. Most common audio formats are accepted (e.g., `.mp3`, `.wav`, etc.).')
            gr.Markdown(f'- Click the **Process audio** button to create the transcriptions of the uploaded track(s). You will have a chance to review the edits before applying the censoring.')
        
            files_input = gr.File(label="Upload audio files", file_count="multiple", elem_id="upload-view", file_types=["audio"])
            process_button = gr.Button("Process audio", elem_id="upload-view")
        
            gr.Markdown('---')
            gr.Markdown('### How it works')
            gr.Markdown("This app uses a fine-tuned version of OpenAI's automatic speech recognition model [Whisper](https://github.com/openai/whisper) to create a lyrics transcript of the uploaded music files. Explicit content (e.g., curse words) are then searched for in the lyrics transcript and highlighted. The vocals stem of the track is split off from the song using [demucs](https://github.com/facebookresearch/demucs) and muted at the appropriate times to create a high-quality edited version of the song.")

        # Results page
        with gr.Column(visible=False) as review_view:
            gr.Markdown("### Review transcript(s) and apply edits")
            gr.Markdown(f'Words to be censored will appear in <caption>{html.escape("red strikethrough")}</s> text in the transcript below. Apply edits by clicking **Apply all edits** below.')
            gr.Markdown("""Entries in the **Explicit flag** column are determined by running the corresponding line through a [toxicity filter](https://huggingface.co/cardiffnlp/twitter-roberta-large-sensitive-multilabel). 
                         
                        - πŸ’₯ = violence or self harm
                        - 🀬 = curse words
                        - 🚬 = drugs
                        - πŸ”ž = sexual content
                        
                        We are currently working on allowing users to select additional words to censor from the full transcript, this flag should guide users towards identifying additional potentially explicit lines.""")
            gr.Markdown("**Note**: Whisper's processing is not deterministic and it can sometimes get confused and hallucinate with audio. If your transcription seems inaccurate (e.g., a line contains the same word repeated *many* times, or a line contains a significant amount of transcribed text not present in the song), please try running the program again on that song.")
            
            with gr.Row(variant="panel"):
                with gr.Column(scale=1):
                    processed_files_selector = gr.Radio(label="Select a file to view its transcript", interactive=True, elem_id="processed-files-radio")
                    apply_button = gr.Button("Apply all edits", elem_id="apply-button", interactive=False)
                    return_to_start_button = gr.Button("Return to start")
                    with gr.Column(visible=False) as final_view:
                        final_status_output = gr.Markdown()
                        edited_files_output = gr.File(label="Download your edited files", file_count="multiple")

                with gr.Column(scale=3):
                    details_header = gr.Markdown()
                    with gr.Accordion("Full audio transcript", open=True):
                        transcript_output = gr.HTML()

        # Processing page. I want this to display more information about what is happening behind the scenes
        # e.g., to inform the user that the program has not just crashed
        with gr.Column(visible=False, elem_id="loading-view") as loading_view:
            gr.Markdown("## ⏳ Processing... please wait")

    # Buttons

    # Process all inputs
    process_button.click(
        fn=handle_batch_analysis,
        inputs=[files_input],
        outputs=[upload_view, review_view, loading_view, analysis_results_state, processed_files_selector, details_header, transcript_output, apply_button]
    )

    # Select between multiple files
    processed_files_selector.change(
        fn=update_details_view,
        inputs=[processed_files_selector, analysis_results_state],
        outputs=[details_header, transcript_output]
    )
    
    # Apply edits
    apply_button.click(
        fn=handle_batch_finalization,
        inputs=[analysis_results_state],
        outputs=[review_view, loading_view, final_view, final_status_output, edited_files_output, processed_files_selector, apply_button]
    )

    # Go back to start. The JS for the confirmation is not working!
    return_to_start_button.click(
        fn=return_to_start,
        inputs=[analysis_results_state],
        outputs=[
            upload_view,
            review_view,
            final_view,
            apply_button,
            processed_files_selector,
            analysis_results_state,
            details_header,
            transcript_output,
            final_status_output,
            edited_files_output,
            files_input
        ],
        js="() => { if (confirm('Are you sure you want to return to the start? All current analysis will be lost.')) { return true; } else { return false; } }"
    )

# Made a little favicon :)
demo.launch(share=True, favicon_path='fav.png')