File size: 11,260 Bytes
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
 
 
 
 
ad16150
 
 
9e4f7db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad16150
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
9e4f7db
 
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
 
 
 
ad16150
 
9e4f7db
 
ad16150
 
 
 
 
 
 
 
 
 
 
9e4f7db
 
 
ad16150
9e4f7db
 
 
 
 
 
 
 
 
ad16150
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e4f7db
ad16150
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import whisper_timestamped as whisper_t
import whisper
import torch
import os
import demucs.separate
import re
from pydub import AudioSegment
from mutagen.easyid3 import EasyID3
import lyricsgenius
import jiwer
import shutil
import tempfile



## Get a genius API key at https://genius.com/api-clients
## put your key in system environment at GENIUS_API_TOKEN or set it manually here
GENIUS_API_TOKEN = os.getenv("GENIUS_API_TOKEN") 
genius = lyricsgenius.Genius(GENIUS_API_TOKEN, verbose=False, remove_section_headers=True)


#############################################################################
### just a heads up there's a bunch of curse words and racial slurs below ###
#############################################################################


# List of words to search for to be muted:
# The way this works currently is that we look for these words as **substrings** of each transcribed word
# this means that 'fuck' handles all versions 'fucking', 'motherfucker', 'fucked', etc.
# This method is a bit crude as it can lead to some false positive, ex. 'Dickens' would be censored.
# Consider using an LLM on the output for classification?  
default_curse_words = {
    'fuck', 'shit', 'piss', 'bitch', 'nigg', 'dyke', 'cock', 'faggot', 
    'cunt', 'tits', 'pussy', 'dick', 'asshole', 'whore', 'goddam',
    'douche', 'chink', 'tranny', 'slut', 'jizz', 'kike', 'gook'
}

# Words for which the substring method will absolutely not work
singular_curse_words = {
    'fag', 'cum', 'hell', 'spic', 'clit', 'wank', 'ass'
}

######################################################
# Helper functions required for the gradio interface #
######################################################

# Removes all punctuation and returns lower case only words
def remove_punctuation(s):
    s = re.sub(r'[^a-zA-Z0-9\s]', '', s)
    return s.lower()

# For silencing the audio tracks at the indicated times
def silence_audio_segment(input_audio_path, output_audio_path, times):
    audio = AudioSegment.from_file(input_audio_path)
    for (start_ms, end_ms) in times:
        before_segment = audio[:start_ms]
        target_segment = audio[start_ms:end_ms] - 60
        after_segment = audio[end_ms:]
        audio = before_segment + target_segment + after_segment
    audio.export(output_audio_path, format='wav')

# For combining the vocals and instrument stems once the censoring has been applied
def combine_audio(path1, path2, outpath):
    audio1 = AudioSegment.from_file(path1, format='wav')
    audio2 = AudioSegment.from_file(path2, format='wav')
    combined_audio = audio1.overlay(audio2)
    combined_audio.export(outpath, format="mp3")

# Extracts metadata from the original song
def get_metadata(original_audio_path):
    try:
        audio_orig = EasyID3(original_audio_path)
        metadata = {'title': audio_orig.get('title', [None])[0], 'artist': audio_orig.get('artist', [None])[0], 'album': audio_orig.get('album', [None])[0], 'year': audio_orig.get('date', [None])[0]}
    except Exception:
        metadata = {'title': 'N/A', 'artist': 'N/A', 'album': 'N/A', 'year': 'N/A'}
    return metadata

# Transfers metadata between two songs
def transfer_metadata(original_audio_path, edited_audio_path):
    try:
        audio_orig = EasyID3(original_audio_path)
        audio_edit = EasyID3(edited_audio_path)
        for key in audio_orig.keys():
            audio_edit[key] = audio_orig[key]
        audio_edit.save()
    except Exception as e:
        print(f"Could not transfer metadata: {e}")

# Probably overcomplicated function to convert time in seconds to mm:ss format
def seconds_to_minutes(time):
    mins = int(time // 60)
    secs = int(time % 60)

    if secs == 0:
        return f'{mins}:00'

    elif secs < 10:
        return f'{mins}:0{secs}'

    else:
        return f"{mins}:{secs}"

# Lookup url on genius of lyrics for given song
def get_genius_url(artist, song_title):
    if not artist or not song_title or artist == 'N/A' or song_title == 'N/A': return None
    try:
        song = genius.search_song(song_title, artist)
        return song.url if song else None
    except Exception: return None

# It's called calculate_wer but I'm actually using *mer*
def calculate_wer(ground_truth, hypothesis):
    if not ground_truth or not hypothesis or "not available" in ground_truth.lower(): return None
    try:
        transformation = jiwer.Compose([jiwer.ToLowerCase(), jiwer.RemovePunctuation(), jiwer.RemoveMultipleSpaces(), jiwer.Strip(), jiwer.ExpandCommonEnglishContractions(), jiwer.RemoveEmptyStrings()])
        error = jiwer.mer(transformation(ground_truth), transformation(hypothesis))
        return f"{error:.3f}"
    except Exception: return "Error"

# Gets the lyrics from genius for a given song
def get_genius_lyrics(artist, song_title):
    if not artist or not song_title or artist == 'N/A' or song_title == 'N/A': return "Lyrics not available (missing metadata)."
    try:
        song = genius.search_song(song_title, artist)
        return song.lyrics if song else "Could not find lyrics on Genius."
    except Exception: return "An error occurred while searching for lyrics."

##########################################################
# STEP 1: Analyze Audio, Separate Tracks, and Transcribe #
##########################################################

# Obtain transcript from song using Whisper. Whisper_timestamps handles all the splitting of the segments
def analyze_audio(audio_path, model, device, fine_tuned=True, progress=None):
    """
    Performs audio separation and transcription. Does NOT apply any edits.
    Returns a state dictionary with paths to temp files and the transcript.
    """
    if progress: progress(0, desc="Setting up temporary directory...")
    run_temp_dir = tempfile.mkdtemp()
    
    source_path = os.path.abspath(audio_path)
    
    # This line is changed to use the standardized filename 'temp_audio.mp3'
    temp_audio_path = os.path.join(run_temp_dir, 'temp_audio.mp3')
    shutil.copy(source_path, temp_audio_path)

    metadata = get_metadata(temp_audio_path)
    metadata['genius_url'] = get_genius_url(metadata['artist'], metadata['title'])
    metadata['genius_lyrics'] = get_genius_lyrics(metadata['artist'], metadata['title'])

    if progress: progress(0.1, desc="Separating vocals with Demucs...")
    demucs.separate.main(["--two-stems", "vocals", "-n", "mdx_extra", "-o", run_temp_dir, temp_audio_path])
    demucs_out_name = os.path.splitext(os.path.basename(temp_audio_path))[0]
    vocals_path = os.path.join(run_temp_dir, "mdx_extra", demucs_out_name, "vocals.wav")
    no_vocals_path = os.path.join(run_temp_dir, "mdx_extra", demucs_out_name, "no_vocals.wav")

    if progress: progress(0.6, desc="Transcribing with Whisper...")
    if not fine_tuned:
        result = model.transcribe(vocals_path, language='en', task='transcribe', word_timestamps=True)
        word_key, prob_key = 'word', 'probability'
    else:
        audio = whisper_t.load_audio(vocals_path)
        result = whisper_t.transcribe(model, audio, beam_size=5, best_of=5, temperature=(0.0, 0.2, 0.4, 0.6, 0.8, 1.0), language="en", task='transcribe')
        word_key, prob_key = 'text', 'confidence'

    full_transcript = []
    initial_explicit_times = []
    
    # Certain phrases can run two words, we need a previous word catcher
    prev_word = ''
    prev_start, prev_end = 0.0, 0.0

    for segment in result["segments"]:
        segment_words = []
        
        for word_info in segment.get('words', []):
            word_text = word_info.get(word_key, '').strip()
            if not word_text: continue
            
            cleaned_word = remove_punctuation(word_text)
            is_explicit = any(curse in cleaned_word for curse in default_curse_words)
            
            start_time = float(word_info['start'])
            end_time = float(word_info['end'])
            
            word_data = {'text': word_text, 'start': start_time, 'end': end_time, 'prob': word_info[prob_key]}
            segment_words.append(word_data)

            # Short words that can be substrings of nonsensitive words
            if cleaned_word in singular_curse_words:
                initial_explicit_times.append({'start': start_time, 'end': end_time})

            # Handle two word cluster "god dam*", "mother fuck*". 
            # Other ones: jerk off, cock sucker, ... ?
            elif ('dam' in cleaned_word and prev_word == 'god') or ('fuck' in cleaned_word and prev_word == 'mother') or (cleaned_word == 'off' and prev_word == 'jerk'):
                initial_explicit_times.append({'start': prev_start, 'end': prev_end})
                initial_explicit_times.append({'start': start_time, 'end': end_time})

            # The majority of censored words will come from here
            elif is_explicit:
                initial_explicit_times.append({'start': start_time, 'end': end_time})

            prev_word = cleaned_word
            prev_start, prev_end = start_time, end_time
            
        full_transcript.append({'line_words': segment_words, 'start': segment['start'], 'end': segment['end']})

    transcript_text = " ".join([word['text'] for seg in full_transcript for word in seg['line_words']])
    metadata['wer_score'] = calculate_wer(metadata['genius_lyrics'], transcript_text)

    if device == 'cuda': torch.cuda.empty_cache()
    
    return {
        "temp_dir": run_temp_dir,
        "vocals_path": vocals_path,
        "no_vocals_path": no_vocals_path,
        "original_audio_path_copy": temp_audio_path,
        "original_filename": os.path.basename(source_path),
        "transcript": full_transcript,
        "initial_explicit_times": initial_explicit_times,
        "metadata": metadata
    }

##############################################
# STEP 2: Apply Censoring and Finalize Audio #
##############################################

# Applies the censoring at the indicated times
def apply_censoring(analysis_state, times_to_censor, progress=None):
    """
    Takes the state from analyze_audio and a final list of timestamps,
    applies silencing, and creates the final audio file in the temp directory.
    """
    if not times_to_censor:
        # If there's nothing to censor, we don't need to do anything.
        # The temporary directory will be cleaned up by the app logic.
        return None
    
    if progress: progress(0, desc="Applying silence to vocal track...")
    times_in_ms = [(int(t['start']*1000), int(t['end']*1000)) for t in times_to_censor]
    silence_audio_segment(analysis_state['vocals_path'], analysis_state['vocals_path'], times_in_ms)
    
    base_name = os.path.splitext(analysis_state['original_filename'])[0]
    # MODIFIED: Save the output file to the existing temporary directory.
    output_path = os.path.join(analysis_state['temp_dir'], f"{base_name}-edited.mp3")

    if progress: progress(0.6, desc="Combining audio tracks...")
    combine_audio(analysis_state['vocals_path'], analysis_state['no_vocals_path'], output_path)
    transfer_metadata(analysis_state['original_audio_path_copy'], output_path)

    # MODIFIED: The temporary directory is no longer removed here.
    # Cleanup will be handled by the main application UI logic.

    return output_path