add clip evaluator on mscoco and flickr8k dataset
Browse files- app.py +77 -0
- clip_eval.py +149 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,77 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import evaluate
|
3 |
+
|
4 |
+
clip_metric = evaluate.load("d-matrix/dmx_clip_eval")
|
5 |
+
print("Successfully loaded CLIP evaluation metric")
|
6 |
+
|
7 |
+
AVAILABLE_MODELS = [
|
8 |
+
"openai/clip-vit-base-patch32",
|
9 |
+
"openai/clip-vit-large-patch14",
|
10 |
+
"openai/clip-vit-base-patch16",
|
11 |
+
]
|
12 |
+
|
13 |
+
AVAILABLE_DATASETS = ["mscoco", "flickr"]
|
14 |
+
|
15 |
+
with gr.Blocks(title="CLIP Evaluation") as demo:
|
16 |
+
gr.Markdown("# CLIP Model Evaluation")
|
17 |
+
gr.Markdown(
|
18 |
+
"""
|
19 |
+
This tool evaluates CLIP models on image-text retrieval tasks using standard datasets.
|
20 |
+
"""
|
21 |
+
)
|
22 |
+
|
23 |
+
with gr.Row():
|
24 |
+
with gr.Column():
|
25 |
+
model_input = gr.Dropdown(
|
26 |
+
choices=AVAILABLE_MODELS, value=AVAILABLE_MODELS[0], label="CLIP Model"
|
27 |
+
)
|
28 |
+
|
29 |
+
dataset_input = gr.Dropdown(
|
30 |
+
choices=AVAILABLE_DATASETS, value="mscoco", label="Dataset"
|
31 |
+
)
|
32 |
+
|
33 |
+
samples_input = gr.Slider(
|
34 |
+
minimum=1, maximum=10, value=1, step=1, label="Number of samples"
|
35 |
+
)
|
36 |
+
|
37 |
+
evaluate_button = gr.Button("Evaluate Model")
|
38 |
+
|
39 |
+
with gr.Column():
|
40 |
+
results_output = gr.Markdown("Results will appear here")
|
41 |
+
|
42 |
+
def evaluate_clip(model_name, dataset, num_samples, progress=gr.Progress()):
|
43 |
+
progress(0, desc="Evaluating CLIP model...")
|
44 |
+
|
45 |
+
results = clip_metric.compute(
|
46 |
+
model_name=[model_name],
|
47 |
+
dataset_names=[dataset],
|
48 |
+
n_examples=[int(num_samples)],
|
49 |
+
)
|
50 |
+
|
51 |
+
output = f"## CLIP Evaluation Results\n\n"
|
52 |
+
output += f"**Model:** {model_name}\n"
|
53 |
+
output += f"**Dataset:** {dataset}\n"
|
54 |
+
output += f"**Samples:** {num_samples}\n\n"
|
55 |
+
|
56 |
+
output += "**Image Retrieval (TextβImage):**\n"
|
57 |
+
for k in [1, 5, 10]:
|
58 |
+
metric_name = f"{dataset}:image_recall@{k}"
|
59 |
+
if metric_name in results:
|
60 |
+
output += f"* Recall@{k}: {results[metric_name]:.4f}\n"
|
61 |
+
|
62 |
+
output += "\n**Text Retrieval (ImageβText):**\n"
|
63 |
+
for k in [1, 5, 10]:
|
64 |
+
metric_name = f"{dataset}:text_recall@{k}"
|
65 |
+
if metric_name in results:
|
66 |
+
output += f"* Recall@{k}: {results[metric_name]:.4f}\n"
|
67 |
+
|
68 |
+
return output
|
69 |
+
|
70 |
+
evaluate_button.click(
|
71 |
+
fn=evaluate_clip,
|
72 |
+
inputs=[model_input, dataset_input, samples_input],
|
73 |
+
outputs=results_output,
|
74 |
+
)
|
75 |
+
|
76 |
+
if __name__ == "__main__":
|
77 |
+
demo.launch()
|
clip_eval.py
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import evaluate
|
2 |
+
from evaluate.utils.file_utils import add_start_docstrings
|
3 |
+
import datasets
|
4 |
+
import torch
|
5 |
+
from transformers import CLIPProcessor, CLIPModel
|
6 |
+
from tqdm import tqdm
|
7 |
+
|
8 |
+
_DESCRIPTION = """
|
9 |
+
This metric evaluates CLIP models on image-text retrieval tasks using standard datasets.
|
10 |
+
It calculates Recall@K metrics for both text-to-image and image-to-text retrieval.
|
11 |
+
"""
|
12 |
+
|
13 |
+
_KWARGS_DESCRIPTION = """
|
14 |
+
Args:
|
15 |
+
model_name: Name or path of the CLIP model to evaluate (e.g., "openai/clip-vit-base-patch32")
|
16 |
+
dataset_names: List of dataset names to evaluate on (choices: "mscoco", "flickr")
|
17 |
+
n_examples: Number of examples to use for evaluation (-1 for all)
|
18 |
+
|
19 |
+
Returns:
|
20 |
+
Dictionary containing Recall@K metrics for each dataset and retrieval direction
|
21 |
+
"""
|
22 |
+
|
23 |
+
_CITATION = """
|
24 |
+
@inproceedings{radford2021learning,
|
25 |
+
title={Learning transferable visual models from natural language supervision},
|
26 |
+
author={Radford, Alec and Kim, Jong Wook and Hallacy, Chris and Ramesh, Aditya and others},
|
27 |
+
booktitle={International Conference on Machine Learning},
|
28 |
+
year={2021},
|
29 |
+
}
|
30 |
+
"""
|
31 |
+
|
32 |
+
|
33 |
+
@add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
|
34 |
+
class DmxClipEval(evaluate.Metric):
|
35 |
+
def _info(self):
|
36 |
+
return evaluate.MetricInfo(
|
37 |
+
module_type="metric",
|
38 |
+
description=_DESCRIPTION,
|
39 |
+
citation=_CITATION,
|
40 |
+
inputs_description=_KWARGS_DESCRIPTION,
|
41 |
+
features=[
|
42 |
+
datasets.Features(
|
43 |
+
{
|
44 |
+
"model_name": datasets.Value("string"),
|
45 |
+
"dataset_names": datasets.Value("string"),
|
46 |
+
"n_examples": datasets.Value("int32"),
|
47 |
+
}
|
48 |
+
),
|
49 |
+
],
|
50 |
+
)
|
51 |
+
|
52 |
+
def clip_dataset_evaluator(
|
53 |
+
self, model, device, dataset_name="mscoco", n_examples=-1
|
54 |
+
):
|
55 |
+
processor = CLIPProcessor.from_pretrained(model.config._name_or_path)
|
56 |
+
if dataset_name == "mscoco":
|
57 |
+
ds = datasets.load_dataset(
|
58 |
+
"clip-benchmark/wds_mscoco_captions", split="test"
|
59 |
+
)
|
60 |
+
elif dataset_name == "flickr":
|
61 |
+
ds = datasets.load_dataset("clip-benchmark/wds_flickr8k", split="test")
|
62 |
+
else:
|
63 |
+
raise ValueError(f"invalid dataset name : {dataset_name}")
|
64 |
+
|
65 |
+
if n_examples != -1:
|
66 |
+
ds = ds.select(range(min(n_examples, len(ds))))
|
67 |
+
|
68 |
+
dl = torch.utils.data.DataLoader(torch.arange(len(ds)), batch_size=8)
|
69 |
+
all_image_embeds = []
|
70 |
+
all_text_embeds = []
|
71 |
+
|
72 |
+
for indices in tqdm(dl, desc=f"Processing {dataset_name}"):
|
73 |
+
batch = ds[indices.tolist()]
|
74 |
+
inputs = processor(
|
75 |
+
text=batch["txt"],
|
76 |
+
images=batch["jpg"],
|
77 |
+
return_tensors="pt",
|
78 |
+
padding=True,
|
79 |
+
)
|
80 |
+
inputs["input_ids"] = inputs["input_ids"][:, :77]
|
81 |
+
inputs["attention_mask"] = inputs["attention_mask"][:, :77]
|
82 |
+
inputs = {k: v.to(device) for k, v in inputs.items()}
|
83 |
+
|
84 |
+
with torch.no_grad():
|
85 |
+
output = model(**inputs)
|
86 |
+
|
87 |
+
all_image_embeds.append(output.image_embeds.cpu())
|
88 |
+
all_text_embeds.append(output.text_embeds.cpu())
|
89 |
+
|
90 |
+
all_image_embeds = torch.cat(all_image_embeds, dim=0)
|
91 |
+
all_text_embeds = torch.cat(all_text_embeds, dim=0)
|
92 |
+
text_img_sim = all_text_embeds @ all_image_embeds.t()
|
93 |
+
|
94 |
+
def get_top_k(sim_mat, k_arr):
|
95 |
+
ordered_winners = torch.argsort(sim_mat, dim=-1, descending=True)
|
96 |
+
correct_winner_mask = (
|
97 |
+
ordered_winners
|
98 |
+
== torch.arange(ordered_winners.shape[0])
|
99 |
+
.unsqueeze(1)
|
100 |
+
.to(ordered_winners.device)
|
101 |
+
).long()
|
102 |
+
return [
|
103 |
+
correct_winner_mask[:, :k].sum(-1).float().mean().item() for k in k_arr
|
104 |
+
]
|
105 |
+
|
106 |
+
k_arr = [1, 5, 10]
|
107 |
+
metrics = {
|
108 |
+
**{
|
109 |
+
f"{dataset_name}:image_recall@{k}": val
|
110 |
+
for k, val in zip(k_arr, get_top_k(text_img_sim, k_arr))
|
111 |
+
},
|
112 |
+
**{
|
113 |
+
f"{dataset_name}:text_recall@{k}": val
|
114 |
+
for k, val in zip(k_arr, get_top_k(text_img_sim.t(), k_arr))
|
115 |
+
},
|
116 |
+
}
|
117 |
+
return metrics
|
118 |
+
|
119 |
+
def clip_evaluator(self, model, device, desc, n_examples=-1):
|
120 |
+
metrics = {}
|
121 |
+
for name in ["mscoco", "flickr"]:
|
122 |
+
metrics.update(
|
123 |
+
self.clip_dataset_evaluator(model, device, desc, name, n_examples)
|
124 |
+
)
|
125 |
+
return metrics
|
126 |
+
|
127 |
+
def _compute(self, model_name, dataset_names, n_examples):
|
128 |
+
|
129 |
+
actual_model_name = model_name[0]
|
130 |
+
actual_dataset_name_str = dataset_names[0]
|
131 |
+
actual_n_examples = n_examples[0]
|
132 |
+
|
133 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
134 |
+
model = CLIPModel.from_pretrained(actual_model_name).to(device)
|
135 |
+
|
136 |
+
datasets_to_evaluate = [actual_dataset_name_str]
|
137 |
+
|
138 |
+
metrics = {}
|
139 |
+
for ds_name_loop_var in datasets_to_evaluate:
|
140 |
+
dataset_metrics = self.clip_dataset_evaluator(
|
141 |
+
model=model,
|
142 |
+
device=device,
|
143 |
+
desc=actual_model_name,
|
144 |
+
dataset_name=ds_name_loop_var,
|
145 |
+
n_examples=actual_n_examples,
|
146 |
+
)
|
147 |
+
metrics.update(dataset_metrics)
|
148 |
+
|
149 |
+
return metrics
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio>=3.50.0
|
2 |
+
torch>=2.5.0
|
3 |
+
transformers>=4.48.0
|
4 |
+
datasets>=2.21.0
|
5 |
+
tqdm>=4.65.0
|
6 |
+
evaluate>= 0.4.3
|