Last commit not found
# Copyright (C) 2024-present Naver Corporation. All rights reserved. | |
# Licensed under CC BY-NC-SA 4.0 (non-commercial use only). | |
# | |
# -------------------------------------------------------- | |
# Dataloader for Spring | |
# -------------------------------------------------------- | |
import os.path as osp | |
from glob import glob | |
import itertools | |
import numpy as np | |
import re | |
import cv2 | |
import os | |
import sys | |
sys.path.append('/home/lipeng/ljh_code/Video_Depth_CVPR2025-main/dust3r_train') | |
from dust3r.datasets.base.base_stereo_view_dataset import BaseStereoViewDataset | |
from dust3r.utils.image import imread_cv2 | |
TAG_FLOAT = 202021.25 | |
def depth_read(filename): | |
"""Read depth data from file, return as numpy array.""" | |
f = open(filename, "rb") | |
check = np.fromfile(f, dtype=np.float32, count=1)[0] | |
assert ( | |
check == TAG_FLOAT | |
), " depth_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? ".format( | |
TAG_FLOAT, check | |
) | |
width = np.fromfile(f, dtype=np.int32, count=1)[0] | |
height = np.fromfile(f, dtype=np.int32, count=1)[0] | |
size = width * height | |
assert ( | |
width > 0 and height > 0 and size > 1 and size < 100000000 | |
), " depth_read:: Wrong input size (width = {0}, height = {1}).".format( | |
width, height | |
) | |
depth = np.fromfile(f, dtype=np.float32, count=-1).reshape((height, width)) | |
return depth | |
def cam_read(filename): | |
""" Read camera data, return (M,N) tuple. | |
M is the intrinsic matrix, N is the extrinsic matrix, so that | |
x = M*N*X, | |
with x being a point in homogeneous image pixel coordinates, X being a | |
point in homogeneous world coordinates. | |
""" | |
f = open(filename,'rb') | |
check = np.fromfile(f,dtype=np.float32,count=1)[0] | |
assert check == TAG_FLOAT, ' cam_read:: Wrong tag in flow file (should be: {0}, is: {1}). Big-endian machine? '.format(TAG_FLOAT,check) | |
M = np.fromfile(f,dtype='float64',count=9).reshape((3,3)) | |
N = np.fromfile(f,dtype='float64',count=12).reshape((3,4)) | |
return M,N | |
class SintelDatasets(BaseStereoViewDataset): | |
def __init__(self, *args, split, ROOT, **kwargs): | |
self.ROOT = ROOT # ROOT = "/media/8TB/tyhuang/video_depth/vkitti_2.0.3_proc" | |
super().__init__(*args, **kwargs) | |
self.dataset_label = 'Sintel' | |
test_scenes = [] | |
scene_list = [] | |
for scene in os.listdir(ROOT): | |
scene_list.append(osp.join(ROOT, scene)) | |
self.pair_dict = {} | |
pair_num = 0 | |
for scene in scene_list: | |
imgs = sorted(glob(osp.join(scene, '*.png'))) | |
len_imgs = len(imgs) | |
# combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) | |
# if abs(i - j) <= 15 or (abs(i - j) <= 30 and abs(i - j) % 5 == 0)] | |
combinations = [(i, j) for i, j in itertools.combinations(range(len_imgs), 2) if abs(i - j) <= 3] | |
for (i, j) in combinations: | |
self.pair_dict[pair_num] = [imgs[i], imgs[j]] | |
pair_num += 1 | |
def __len__(self): | |
return len(self.pair_dict) | |
def _get_views(self, idx, resolution, rng): | |
views = [] | |
for img_path in self.pair_dict[idx]: | |
rgb_image = imread_cv2(img_path) | |
depthmap_path = img_path.replace('MPI-Sintel-training_images', 'MPI-Sintel-depth-training').replace('final/','depth/').replace('.png','.dpt') | |
mask_path = img_path.replace('MPI-Sintel-training_images', 'MPI-Sintel-depth-training').replace('final/','dynamic_label_perfect/') | |
metadata_path = img_path.replace('MPI-Sintel-training_images', 'MPI-Sintel-depth-training').replace('final/','camdata_left/').replace('.png','.cam') | |
pred_depth = np.load(img_path.replace('final','depth_prediction_' + self.depth_prior_name).replace('.png', '.npz'))#['depth'] | |
focal_length_px = pred_depth['focallength_px'] | |
pred_depth = pred_depth['depth'] | |
pred_depth = self.pixel_to_pointcloud(pred_depth, focal_length_px) | |
depthmap = depth_read(depthmap_path) | |
if os.path.exists(mask_path): | |
maskmap = imread_cv2(mask_path, cv2.IMREAD_UNCHANGED).astype(np.float32) | |
maskmap = (maskmap / 255.0) > 0.1 | |
#print(maskmap.max()) | |
#maskmap = maskmap * (depthmap<100) | |
depthmap *= maskmap | |
intrinsics, extrinsics = cam_read(metadata_path) | |
intrinsics, extrinsics = np.array(intrinsics, dtype=np.float32), np.array(extrinsics, dtype=np.float32) | |
R = extrinsics[:3,:3] | |
t = extrinsics[:3,3] | |
camera_pose = np.eye(4, dtype=np.float32) | |
camera_pose[:3,:3] = R.T | |
camera_pose[:3,3] = -R.T @ t | |
#camera_pose = np.linalg.inv(camera_pose) | |
# max_depth = np.float32(metadata['maximum_depth']) | |
# depthmap = (depthmap.astype(np.float32) / 20.0) | |
# camera_pose[:3, 3] /= 20.0 | |
# pred_depth = pred_depth/20.0 | |
rgb_image, depthmap, pred_depth, intrinsics = self._crop_resize_if_necessary( | |
rgb_image, depthmap, pred_depth, intrinsics, resolution, rng=rng, info=img_path) | |
num_valid = (depthmap > 0.0).sum() | |
# assert num_valid > 0 | |
# if num_valid==0: | |
# depthmap +=0.001 | |
views.append(dict( | |
img=rgb_image, | |
depthmap=depthmap, | |
camera_pose=camera_pose, | |
camera_intrinsics=intrinsics, | |
dataset=self.dataset_label, | |
label=img_path, | |
instance=img_path, | |
pred_depth=pred_depth | |
)) | |
return views | |
if __name__ == "__main__": | |
from dust3r.datasets.base.base_stereo_view_dataset import view_name | |
from dust3r.viz import SceneViz, auto_cam_size | |
from dust3r.utils.image import rgb | |
dataset = SintelDatasets(split='train', ROOT="/data/lipeng/ljh_data/MPI-Sintel/MPI-Sintel/MPI-Sintel-training_images/training/final", resolution=512, aug_crop=16) | |
a = len(dataset) | |
for idx in np.random.permutation(len(dataset)): | |
views = dataset[idx] | |
assert len(views) == 2 | |
print(view_name(views[0]), view_name(views[1])) | |
viz = SceneViz() | |
poses = [views[view_idx]['camera_pose'] for view_idx in [0, 1]] | |
cam_size = max(auto_cam_size(poses), 0.001) | |
for view_idx in [0, 1]: | |
pts3d = views[view_idx]['pts3d'] | |
valid_mask = views[view_idx]['valid_mask'] | |
colors = rgb(views[view_idx]['img']) | |
# viz.add_pointcloud(pts3d, colors, valid_mask) | |
# viz.add_camera(pose_c2w=views[view_idx]['camera_pose'], | |
# focal=views[view_idx]['camera_intrinsics'][0, 0], | |
# color=(idx * 255, (1 - idx) * 255, 0), | |
# image=colors, | |
# cam_size=cam_size) | |
# viz.show() |