Spaces:
Runtime error
Runtime error
import gradio as gr | |
from langchain.document_loaders import OnlinePDFLoader | |
from langchain.text_splitter import CharacterTextSplitter | |
from langchain.llms import HuggingFaceHub | |
from langchain.embeddings import HuggingFaceHubEmbeddings | |
from langchain.vectorstores import Chroma | |
from langchain.chains import RetrievalQA | |
import os | |
#os.environ["HUGGINGFACEHUB_API_TOKEN"] = "" | |
def file_upload_click(pdf_doc): | |
loader = OnlinePDFLoader(pdf_doc.name) | |
documents = loader.load() | |
text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0) | |
texts = text_splitter.split_documents(documents) | |
embeddings = HuggingFaceHubEmbeddings() | |
db = Chroma.from_documents(texts, embeddings) | |
retriever = db.as_retriever() | |
llm = HuggingFaceHub(repo_id="OpenAssistant/oasst-sft-1-pythia-12b", model_kwargs={"temperature":0.1, "max_new_tokens":250}) | |
global qa | |
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=retriever, return_source_documents=True) | |
return "Ready" | |
def add_text(history, text): | |
history = history + [(text, None)] | |
return history, "" | |
def bot(history): | |
query=history[-1][0] | |
response = qa({"query": query}) | |
history[-1][1] = response['result'] | |
return history | |
with gr.Blocks() as demo: | |
status_label = gr.Label(value='Start') | |
file_upload = gr.File(label="Uplaod pdf", file_types=['.pdf'], type="file") | |
file_upload_button= gr.Button('upload file') | |
chatbot = gr.Chatbot([], elem_id="chatbot").style(height=350) | |
question = gr.Textbox(label="Question", placeholder="Type your question and click submit") | |
submit_btn = gr.Button("Send message") | |
file_upload_button.click(file_upload_click, inputs=[file_upload], outputs=[status_label], queue=False) | |
submit_btn.click(add_text, [chatbot, question], [chatbot, question], queue=False).then( | |
bot, chatbot, chatbot | |
) | |
demo.queue() | |
demo.launch() |