Commit
·
5c0c2df
0
Parent(s):
Duplicate from yhshin/latex-ocr
Browse filesCo-authored-by: Young Ho Shin <[email protected]>
- .gitattributes +27 -0
- README.md +14 -0
- app.py +74 -0
- article.md +74 -0
- examples/1d32874f02.png +0 -0
- examples/1e466b180d.png +0 -0
- examples/2d3503f427.png +0 -0
- examples/2f9d3c4e43.png +0 -0
- examples/51c5cc2ff5.png +0 -0
- examples/545a492388.png +0 -0
- examples/6a51a30502.png +0 -0
- examples/6bf6832adb.png +0 -0
- examples/7afdeff0e6.png +0 -0
- examples/b8f1e64b1f.png +0 -0
- model/config.json +168 -0
- model/pytorch_model.bin +3 -0
- model/tokenizer-wordlevel.json +352 -0
- requirements.txt +4 -0
- tokenizer-wordlevel.json +352 -0
- version-history.md +6 -0
.gitattributes
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
title: Latex Ocr
|
| 3 |
+
emoji: 👀
|
| 4 |
+
colorFrom: red
|
| 5 |
+
colorTo: indigo
|
| 6 |
+
sdk: gradio
|
| 7 |
+
sdk_version: 2.9.4
|
| 8 |
+
app_file: app.py
|
| 9 |
+
pinned: false
|
| 10 |
+
license: mit
|
| 11 |
+
duplicated_from: yhshin/latex-ocr
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
Check out the configuration reference at https://huggingface.co/docs/hub/spaces#reference
|
app.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import TrOCRProcessor, VisionEncoderDecoderModel
|
| 3 |
+
import requests
|
| 4 |
+
from PIL import Image
|
| 5 |
+
|
| 6 |
+
url = 'https://huggingface.co/yhshin/latex-ocr/raw/main/tokenizer-wordlevel.json'
|
| 7 |
+
r = requests.get(url)
|
| 8 |
+
open('tokenizer-wordlevel.json' , 'wb').write(r.content)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-small-printed")
|
| 12 |
+
model = VisionEncoderDecoderModel.from_pretrained("yhshin/latex-ocr")
|
| 13 |
+
|
| 14 |
+
from tokenizers import Tokenizer
|
| 15 |
+
tokenizer = Tokenizer.from_file("tokenizer-wordlevel.json")
|
| 16 |
+
|
| 17 |
+
# load image examples
|
| 18 |
+
|
| 19 |
+
def process_image(image):
|
| 20 |
+
# prepare image
|
| 21 |
+
pixel_values = processor(image, return_tensors="pt").pixel_values
|
| 22 |
+
|
| 23 |
+
# generate (no beam search)
|
| 24 |
+
generated_ids = model.generate(pixel_values)
|
| 25 |
+
|
| 26 |
+
# decode
|
| 27 |
+
generated_text = tokenizer.decode_batch(generated_ids.tolist(), skip_special_tokens=True)[0]
|
| 28 |
+
|
| 29 |
+
# Strip spaces
|
| 30 |
+
generated_text = generated_text.replace(" ", "")
|
| 31 |
+
|
| 32 |
+
return generated_text
|
| 33 |
+
|
| 34 |
+
# !ls examples | grep png
|
| 35 |
+
|
| 36 |
+
# +
|
| 37 |
+
title = "Convert image to LaTeX source code"
|
| 38 |
+
|
| 39 |
+
with open('article.md',mode='r') as file:
|
| 40 |
+
article = file.read()
|
| 41 |
+
|
| 42 |
+
description = """
|
| 43 |
+
This is a demo of machine learning model trained to reconstruct the LaTeX source code of an equation from an image.
|
| 44 |
+
To use it, simply upload an image or use one of the example images below and click 'submit'.
|
| 45 |
+
Results will show up in a few seconds.
|
| 46 |
+
|
| 47 |
+
Try rendering the generated LaTeX [here](https://quicklatex.com/) to compare with the original.
|
| 48 |
+
(The model is not perfect yet, so you may need to edit the resulting LaTeX a bit to get it to render a good match.)
|
| 49 |
+
|
| 50 |
+
"""
|
| 51 |
+
|
| 52 |
+
examples = [
|
| 53 |
+
[ "examples/1d32874f02.png" ],
|
| 54 |
+
[ "examples/1e466b180d.png" ],
|
| 55 |
+
[ "examples/2d3503f427.png" ],
|
| 56 |
+
[ "examples/2f9d3c4e43.png" ],
|
| 57 |
+
[ "examples/51c5cc2ff5.png" ],
|
| 58 |
+
[ "examples/545a492388.png" ],
|
| 59 |
+
[ "examples/6a51a30502.png" ],
|
| 60 |
+
[ "examples/6bf6832adb.png" ],
|
| 61 |
+
[ "examples/7afdeff0e6.png" ],
|
| 62 |
+
[ "examples/b8f1e64b1f.png" ],
|
| 63 |
+
]
|
| 64 |
+
# -
|
| 65 |
+
|
| 66 |
+
iface = gr.Interface(fn=process_image,
|
| 67 |
+
inputs=[gr.inputs.Image(type="pil")],
|
| 68 |
+
outputs=gr.outputs.Textbox(),
|
| 69 |
+
title=title,
|
| 70 |
+
description=description,
|
| 71 |
+
article=article,
|
| 72 |
+
examples=examples)
|
| 73 |
+
iface.launch()
|
| 74 |
+
|
article.md
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
## What's the point of this?
|
| 2 |
+
|
| 3 |
+
LaTeX is the de-facto standard markup language for typesetting pretty equations in academic papers.
|
| 4 |
+
It is extremely feature rich and flexible but very verbose.
|
| 5 |
+
This makes it great for typesetting complex equations, but not very convenient for quick note-taking on the fly.
|
| 6 |
+
|
| 7 |
+
For example, here's a short equation from [this page](https://en.wikipedia.org/wiki/Quantum_electrodynamics) on Wikipedia about Quantum Electrodynamics
|
| 8 |
+
and the corresponding LaTeX code:
|
| 9 |
+
|
| 10 |
+

|
| 11 |
+
|
| 12 |
+
```
|
| 13 |
+
{\displaystyle {\mathcal {L}}={\bar {\psi }}(i\gamma ^{\mu }D_{\mu }-m)\psi -{\frac {1}{4}}F_{\mu \nu }F^{\mu \nu },}
|
| 14 |
+
```
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
This demo is a first step in solving this problem.
|
| 18 |
+
Eventually, you'll be able to take a quick partial screenshot from a paper
|
| 19 |
+
and a program built with this model will generate its corresponding LaTeX source code
|
| 20 |
+
so that you can just copy/paste straight into your personal notes.
|
| 21 |
+
No more endless googling obscure LaTeX syntax!
|
| 22 |
+
|
| 23 |
+
## How does it work?
|
| 24 |
+
|
| 25 |
+
Because this problem involves looking at an image and generating valid LaTeX code,
|
| 26 |
+
the model needs to understand both Computer Vision (CV) and Natural Language Processing (NLP).
|
| 27 |
+
There are some other projects that aim to solve the same problem with some very interesting models.
|
| 28 |
+
These generally involve some kind of "encoder" that looks at the image and extracts/encodes the information about the equation from the image,
|
| 29 |
+
and a "decoder" that takes that information and translates it into what is hopefully both valid and accurate LaTeX code.
|
| 30 |
+
The "encode" part can be done using classic CNN architectures commonly used for CV tasks, or newer vision transformer architectures.
|
| 31 |
+
The "decode" part can be done with LSTMs or transformer decoders, using attention mechanism to make sure the decoder understands long range dependencies, e.g. remembering to close a bracket that was opened a long sequence away.
|
| 32 |
+
|
| 33 |
+
I chose to tackle this problem with transfer learning, using an existing OCR model and fine-tuning it for this task.
|
| 34 |
+
The biggest reason for this is computing constraints -
|
| 35 |
+
GPU hours are expensive so I wanted training to be reasonably fast, on the order of a couple of hours.
|
| 36 |
+
There are some other benefits to this approach,
|
| 37 |
+
e.g. the architecture is already proven to be robust.
|
| 38 |
+
I chose [TrOCR](https://arxiv.org/abs/2109.10282), a model trained at Microsoft for text recognition tasks which uses transformer architecture for both the encoder and decoder.
|
| 39 |
+
|
| 40 |
+
For the data, I used the `im2latex-100k` dataset, which includes a total of roughly 100k formulas and images.
|
| 41 |
+
Some preprocessing steps were done by Harvard NLP for the [`im2markup` project](https://github.com/harvardnlp/im2markup).
|
| 42 |
+
To limit the scope of the project and simplify the task, I limited training data to only look at equations containing 100 LaTeX tokens or less.
|
| 43 |
+
This covers most single line equations, including fractions, subscripts, symbols, etc, but does not cover large multi line equations, some of which can have up to 500 LaTeX tokens.
|
| 44 |
+
GPU training was done on a Kaggle GPU Kernel in roughly 3 hours.
|
| 45 |
+
You can find the full training code on my Kaggle profile [here](https://www.kaggle.com/code/younghoshin/finetuning-trocr/notebook).
|
| 46 |
+
|
| 47 |
+
## What's next?
|
| 48 |
+
|
| 49 |
+
There's multiple improvements that I'm hoping to make to this project.
|
| 50 |
+
|
| 51 |
+
### More robust prediction
|
| 52 |
+
|
| 53 |
+
If you've tried the examples above (randomly sampled from the test set), you've noticed that the model predictions aren't quite perfect and the model occasionally misses, duplicates or mistakes tokens.
|
| 54 |
+
More training on the existing data set could help with this.
|
| 55 |
+
|
| 56 |
+
### More data
|
| 57 |
+
|
| 58 |
+
There's a lot of LaTeX data available on the internet besides `im2latex-100k`, e.g. arXiv and Wikipedia.
|
| 59 |
+
It's just waiting to be scraped and used for this project.
|
| 60 |
+
This means a lot of hours of scraping, cleaning, and processing but having a more diverse set of input images could improve model accuracy significantly.
|
| 61 |
+
|
| 62 |
+
### Faster and smaller model
|
| 63 |
+
|
| 64 |
+
The model currently takes a few seconds to process a single image.
|
| 65 |
+
I would love to improve performance so that it can run in one second or less, maybe even on mobile devices.
|
| 66 |
+
This might be impossible with TrOCR which is a fairly large model, designed for use on GPUs.
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
<p style='text-align: center'>Made by Young Ho Shin</p>
|
| 70 |
+
<p style='text-align: center'>
|
| 71 |
+
<a href = "mailto: [email protected]">Email</a> |
|
| 72 |
+
<a href='https://www.github.com/yhshin11'>Github</a> |
|
| 73 |
+
<a href='https://www.linkedin.com/in/young-ho-shin/'>Linkedin</a>
|
| 74 |
+
</p>
|
examples/1d32874f02.png
ADDED
|
examples/1e466b180d.png
ADDED
|
examples/2d3503f427.png
ADDED
|
examples/2f9d3c4e43.png
ADDED
|
examples/51c5cc2ff5.png
ADDED
|
examples/545a492388.png
ADDED
|
examples/6a51a30502.png
ADDED
|
examples/6bf6832adb.png
ADDED
|
examples/7afdeff0e6.png
ADDED
|
examples/b8f1e64b1f.png
ADDED
|
model/config.json
ADDED
|
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "microsoft/trocr-small-stage1",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"VisionEncoderDecoderModel"
|
| 5 |
+
],
|
| 6 |
+
"decoder": {
|
| 7 |
+
"_name_or_path": "",
|
| 8 |
+
"activation_dropout": 0.0,
|
| 9 |
+
"activation_function": "relu",
|
| 10 |
+
"add_cross_attention": true,
|
| 11 |
+
"architectures": null,
|
| 12 |
+
"attention_dropout": 0.0,
|
| 13 |
+
"bad_words_ids": null,
|
| 14 |
+
"bos_token_id": 0,
|
| 15 |
+
"chunk_size_feed_forward": 0,
|
| 16 |
+
"classifier_dropout": 0.0,
|
| 17 |
+
"cross_attention_hidden_size": 384,
|
| 18 |
+
"d_model": 256,
|
| 19 |
+
"decoder_attention_heads": 8,
|
| 20 |
+
"decoder_ffn_dim": 1024,
|
| 21 |
+
"decoder_layerdrop": 0.0,
|
| 22 |
+
"decoder_layers": 6,
|
| 23 |
+
"decoder_start_token_id": 2,
|
| 24 |
+
"diversity_penalty": 0.0,
|
| 25 |
+
"do_sample": false,
|
| 26 |
+
"dropout": 0.1,
|
| 27 |
+
"early_stopping": false,
|
| 28 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 29 |
+
"eos_token_id": 2,
|
| 30 |
+
"finetuning_task": null,
|
| 31 |
+
"forced_bos_token_id": null,
|
| 32 |
+
"forced_eos_token_id": null,
|
| 33 |
+
"id2label": {
|
| 34 |
+
"0": "LABEL_0",
|
| 35 |
+
"1": "LABEL_1"
|
| 36 |
+
},
|
| 37 |
+
"init_std": 0.02,
|
| 38 |
+
"is_decoder": true,
|
| 39 |
+
"is_encoder_decoder": false,
|
| 40 |
+
"label2id": {
|
| 41 |
+
"LABEL_0": 0,
|
| 42 |
+
"LABEL_1": 1
|
| 43 |
+
},
|
| 44 |
+
"layernorm_embedding": true,
|
| 45 |
+
"length_penalty": 1.0,
|
| 46 |
+
"max_length": 20,
|
| 47 |
+
"max_position_embeddings": 512,
|
| 48 |
+
"min_length": 0,
|
| 49 |
+
"model_type": "trocr",
|
| 50 |
+
"no_repeat_ngram_size": 0,
|
| 51 |
+
"num_beam_groups": 1,
|
| 52 |
+
"num_beams": 1,
|
| 53 |
+
"num_return_sequences": 1,
|
| 54 |
+
"output_attentions": false,
|
| 55 |
+
"output_hidden_states": false,
|
| 56 |
+
"output_scores": false,
|
| 57 |
+
"pad_token_id": 1,
|
| 58 |
+
"prefix": null,
|
| 59 |
+
"problem_type": null,
|
| 60 |
+
"pruned_heads": {},
|
| 61 |
+
"remove_invalid_values": false,
|
| 62 |
+
"repetition_penalty": 1.0,
|
| 63 |
+
"return_dict": true,
|
| 64 |
+
"return_dict_in_generate": false,
|
| 65 |
+
"scale_embedding": true,
|
| 66 |
+
"sep_token_id": null,
|
| 67 |
+
"task_specific_params": null,
|
| 68 |
+
"temperature": 1.0,
|
| 69 |
+
"tie_encoder_decoder": false,
|
| 70 |
+
"tie_word_embeddings": false,
|
| 71 |
+
"tokenizer_class": null,
|
| 72 |
+
"top_k": 50,
|
| 73 |
+
"top_p": 1.0,
|
| 74 |
+
"torch_dtype": null,
|
| 75 |
+
"torchscript": false,
|
| 76 |
+
"transformers_version": "4.16.2",
|
| 77 |
+
"use_bfloat16": false,
|
| 78 |
+
"use_cache": false,
|
| 79 |
+
"use_learned_position_embeddings": true,
|
| 80 |
+
"vocab_size": 64044
|
| 81 |
+
},
|
| 82 |
+
"decoder_start_token_id": 1,
|
| 83 |
+
"early_stopping": true,
|
| 84 |
+
"encoder": {
|
| 85 |
+
"_name_or_path": "",
|
| 86 |
+
"add_cross_attention": false,
|
| 87 |
+
"architectures": null,
|
| 88 |
+
"attention_probs_dropout_prob": 0.0,
|
| 89 |
+
"bad_words_ids": null,
|
| 90 |
+
"bos_token_id": null,
|
| 91 |
+
"chunk_size_feed_forward": 0,
|
| 92 |
+
"cross_attention_hidden_size": null,
|
| 93 |
+
"decoder_start_token_id": null,
|
| 94 |
+
"diversity_penalty": 0.0,
|
| 95 |
+
"do_sample": false,
|
| 96 |
+
"early_stopping": false,
|
| 97 |
+
"encoder_no_repeat_ngram_size": 0,
|
| 98 |
+
"eos_token_id": null,
|
| 99 |
+
"finetuning_task": null,
|
| 100 |
+
"forced_bos_token_id": null,
|
| 101 |
+
"forced_eos_token_id": null,
|
| 102 |
+
"hidden_act": "gelu",
|
| 103 |
+
"hidden_dropout_prob": 0.0,
|
| 104 |
+
"hidden_size": 384,
|
| 105 |
+
"id2label": {
|
| 106 |
+
"0": "LABEL_0",
|
| 107 |
+
"1": "LABEL_1"
|
| 108 |
+
},
|
| 109 |
+
"image_size": 384,
|
| 110 |
+
"initializer_range": 0.02,
|
| 111 |
+
"intermediate_size": 1536,
|
| 112 |
+
"is_decoder": false,
|
| 113 |
+
"is_encoder_decoder": false,
|
| 114 |
+
"label2id": {
|
| 115 |
+
"LABEL_0": 0,
|
| 116 |
+
"LABEL_1": 1
|
| 117 |
+
},
|
| 118 |
+
"layer_norm_eps": 1e-12,
|
| 119 |
+
"length_penalty": 1.0,
|
| 120 |
+
"max_length": 20,
|
| 121 |
+
"min_length": 0,
|
| 122 |
+
"model_type": "deit",
|
| 123 |
+
"no_repeat_ngram_size": 0,
|
| 124 |
+
"num_attention_heads": 6,
|
| 125 |
+
"num_beam_groups": 1,
|
| 126 |
+
"num_beams": 1,
|
| 127 |
+
"num_channels": 3,
|
| 128 |
+
"num_hidden_layers": 12,
|
| 129 |
+
"num_return_sequences": 1,
|
| 130 |
+
"output_attentions": false,
|
| 131 |
+
"output_hidden_states": false,
|
| 132 |
+
"output_scores": false,
|
| 133 |
+
"pad_token_id": null,
|
| 134 |
+
"patch_size": 16,
|
| 135 |
+
"prefix": null,
|
| 136 |
+
"problem_type": null,
|
| 137 |
+
"pruned_heads": {},
|
| 138 |
+
"qkv_bias": true,
|
| 139 |
+
"remove_invalid_values": false,
|
| 140 |
+
"repetition_penalty": 1.0,
|
| 141 |
+
"return_dict": true,
|
| 142 |
+
"return_dict_in_generate": false,
|
| 143 |
+
"sep_token_id": null,
|
| 144 |
+
"task_specific_params": null,
|
| 145 |
+
"temperature": 1.0,
|
| 146 |
+
"tie_encoder_decoder": false,
|
| 147 |
+
"tie_word_embeddings": true,
|
| 148 |
+
"tokenizer_class": null,
|
| 149 |
+
"top_k": 50,
|
| 150 |
+
"top_p": 1.0,
|
| 151 |
+
"torch_dtype": null,
|
| 152 |
+
"torchscript": false,
|
| 153 |
+
"transformers_version": "4.16.2",
|
| 154 |
+
"use_bfloat16": false
|
| 155 |
+
},
|
| 156 |
+
"eos_token_id": 2,
|
| 157 |
+
"is_encoder_decoder": true,
|
| 158 |
+
"length_penalty": 2.0,
|
| 159 |
+
"max_length": 100,
|
| 160 |
+
"model_type": "vision-encoder-decoder",
|
| 161 |
+
"no_repeat_ngram_size": 3,
|
| 162 |
+
"num_beams": 4,
|
| 163 |
+
"pad_token_id": 3,
|
| 164 |
+
"tie_word_embeddings": false,
|
| 165 |
+
"torch_dtype": "float32",
|
| 166 |
+
"transformers_version": null,
|
| 167 |
+
"vocab_size": 200
|
| 168 |
+
}
|
model/pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:f4a4c0a9d1da23b3f66f4e6af213f9d17945aa1fb9376f2ad59c03ec74995ba7
|
| 3 |
+
size 246530221
|
model/tokenizer-wordlevel.json
ADDED
|
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"version": "1.0",
|
| 3 |
+
"truncation": {
|
| 4 |
+
"direction": "Right",
|
| 5 |
+
"max_length": 100,
|
| 6 |
+
"strategy": "LongestFirst",
|
| 7 |
+
"stride": 0
|
| 8 |
+
},
|
| 9 |
+
"padding": {
|
| 10 |
+
"strategy": {
|
| 11 |
+
"Fixed": 100
|
| 12 |
+
},
|
| 13 |
+
"direction": "Right",
|
| 14 |
+
"pad_to_multiple_of": null,
|
| 15 |
+
"pad_id": 0,
|
| 16 |
+
"pad_type_id": 0,
|
| 17 |
+
"pad_token": "[PAD]"
|
| 18 |
+
},
|
| 19 |
+
"added_tokens": [
|
| 20 |
+
{
|
| 21 |
+
"id": 0,
|
| 22 |
+
"content": "[UNK]",
|
| 23 |
+
"single_word": false,
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"id": 1,
|
| 31 |
+
"content": "[CLS]",
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"lstrip": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"normalized": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"id": 2,
|
| 40 |
+
"content": "[SEP]",
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"lstrip": false,
|
| 43 |
+
"rstrip": false,
|
| 44 |
+
"normalized": false,
|
| 45 |
+
"special": true
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"id": 3,
|
| 49 |
+
"content": "[PAD]",
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"lstrip": false,
|
| 52 |
+
"rstrip": false,
|
| 53 |
+
"normalized": false,
|
| 54 |
+
"special": true
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"id": 4,
|
| 58 |
+
"content": "[MASK]",
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"lstrip": false,
|
| 61 |
+
"rstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"special": true
|
| 64 |
+
}
|
| 65 |
+
],
|
| 66 |
+
"normalizer": null,
|
| 67 |
+
"pre_tokenizer": {
|
| 68 |
+
"type": "Whitespace"
|
| 69 |
+
},
|
| 70 |
+
"post_processor": {
|
| 71 |
+
"type": "TemplateProcessing",
|
| 72 |
+
"single": [
|
| 73 |
+
{
|
| 74 |
+
"SpecialToken": {
|
| 75 |
+
"id": "[CLS]",
|
| 76 |
+
"type_id": 0
|
| 77 |
+
}
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"Sequence": {
|
| 81 |
+
"id": "A",
|
| 82 |
+
"type_id": 0
|
| 83 |
+
}
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"SpecialToken": {
|
| 87 |
+
"id": "[SEP]",
|
| 88 |
+
"type_id": 0
|
| 89 |
+
}
|
| 90 |
+
}
|
| 91 |
+
],
|
| 92 |
+
"pair": [
|
| 93 |
+
{
|
| 94 |
+
"SpecialToken": {
|
| 95 |
+
"id": "[CLS]",
|
| 96 |
+
"type_id": 0
|
| 97 |
+
}
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"Sequence": {
|
| 101 |
+
"id": "A",
|
| 102 |
+
"type_id": 0
|
| 103 |
+
}
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"SpecialToken": {
|
| 107 |
+
"id": "[SEP]",
|
| 108 |
+
"type_id": 0
|
| 109 |
+
}
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"Sequence": {
|
| 113 |
+
"id": "B",
|
| 114 |
+
"type_id": 1
|
| 115 |
+
}
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"SpecialToken": {
|
| 119 |
+
"id": "[SEP]",
|
| 120 |
+
"type_id": 1
|
| 121 |
+
}
|
| 122 |
+
}
|
| 123 |
+
],
|
| 124 |
+
"special_tokens": {
|
| 125 |
+
"[CLS]": {
|
| 126 |
+
"id": "[CLS]",
|
| 127 |
+
"ids": [
|
| 128 |
+
1
|
| 129 |
+
],
|
| 130 |
+
"tokens": [
|
| 131 |
+
"[CLS]"
|
| 132 |
+
]
|
| 133 |
+
},
|
| 134 |
+
"[SEP]": {
|
| 135 |
+
"id": "[SEP]",
|
| 136 |
+
"ids": [
|
| 137 |
+
2
|
| 138 |
+
],
|
| 139 |
+
"tokens": [
|
| 140 |
+
"[SEP]"
|
| 141 |
+
]
|
| 142 |
+
}
|
| 143 |
+
}
|
| 144 |
+
},
|
| 145 |
+
"decoder": null,
|
| 146 |
+
"model": {
|
| 147 |
+
"type": "WordLevel",
|
| 148 |
+
"vocab": {
|
| 149 |
+
"[UNK]": 0,
|
| 150 |
+
"[CLS]": 1,
|
| 151 |
+
"[SEP]": 2,
|
| 152 |
+
"[PAD]": 3,
|
| 153 |
+
"[MASK]": 4,
|
| 154 |
+
"}": 5,
|
| 155 |
+
"{": 6,
|
| 156 |
+
"\\": 7,
|
| 157 |
+
"_": 8,
|
| 158 |
+
"^": 9,
|
| 159 |
+
"(": 10,
|
| 160 |
+
")": 11,
|
| 161 |
+
"2": 12,
|
| 162 |
+
"1": 13,
|
| 163 |
+
"-": 14,
|
| 164 |
+
"=": 15,
|
| 165 |
+
",": 16,
|
| 166 |
+
"+": 17,
|
| 167 |
+
"frac": 18,
|
| 168 |
+
"i": 19,
|
| 169 |
+
"0": 20,
|
| 170 |
+
"x": 21,
|
| 171 |
+
"n": 22,
|
| 172 |
+
".": 23,
|
| 173 |
+
"d": 24,
|
| 174 |
+
"\\,": 25,
|
| 175 |
+
"a": 26,
|
| 176 |
+
"mu": 27,
|
| 177 |
+
"left": 28,
|
| 178 |
+
"right": 29,
|
| 179 |
+
"e": 30,
|
| 180 |
+
"k": 31,
|
| 181 |
+
"c": 32,
|
| 182 |
+
"m": 33,
|
| 183 |
+
"r": 34,
|
| 184 |
+
"p": 35,
|
| 185 |
+
"3": 36,
|
| 186 |
+
"alpha": 37,
|
| 187 |
+
"t": 38,
|
| 188 |
+
"partial": 39,
|
| 189 |
+
"~": 40,
|
| 190 |
+
"l": 41,
|
| 191 |
+
"A": 42,
|
| 192 |
+
"s": 43,
|
| 193 |
+
"&": 44,
|
| 194 |
+
"4": 45,
|
| 195 |
+
"j": 46,
|
| 196 |
+
"\\;": 47,
|
| 197 |
+
"g": 48,
|
| 198 |
+
"prime": 49,
|
| 199 |
+
"]": 50,
|
| 200 |
+
"[": 51,
|
| 201 |
+
"nu": 52,
|
| 202 |
+
"z": 53,
|
| 203 |
+
"pi": 54,
|
| 204 |
+
"|": 55,
|
| 205 |
+
"b": 56,
|
| 206 |
+
"phi": 57,
|
| 207 |
+
"\\\\": 58,
|
| 208 |
+
"mathrm": 59,
|
| 209 |
+
"q": 60,
|
| 210 |
+
"operatorname": 61,
|
| 211 |
+
"cal": 62,
|
| 212 |
+
"N": 63,
|
| 213 |
+
"delta": 64,
|
| 214 |
+
"f": 65,
|
| 215 |
+
"lambda": 66,
|
| 216 |
+
"beta": 67,
|
| 217 |
+
"bar": 68,
|
| 218 |
+
"T": 69,
|
| 219 |
+
"int": 70,
|
| 220 |
+
"array": 71,
|
| 221 |
+
"R": 72,
|
| 222 |
+
"S": 73,
|
| 223 |
+
"D": 74,
|
| 224 |
+
"L": 75,
|
| 225 |
+
"M": 76,
|
| 226 |
+
"B": 77,
|
| 227 |
+
"y": 78,
|
| 228 |
+
"sigma": 79,
|
| 229 |
+
"F": 80,
|
| 230 |
+
"theta": 81,
|
| 231 |
+
"/": 82,
|
| 232 |
+
"gamma": 83,
|
| 233 |
+
"h": 84,
|
| 234 |
+
"hat": 85,
|
| 235 |
+
"psi": 86,
|
| 236 |
+
"sqrt": 87,
|
| 237 |
+
"sum": 88,
|
| 238 |
+
"u": 89,
|
| 239 |
+
"H": 90,
|
| 240 |
+
"o": 91,
|
| 241 |
+
"rho": 92,
|
| 242 |
+
"tilde": 93,
|
| 243 |
+
"tau": 94,
|
| 244 |
+
"C": 95,
|
| 245 |
+
"P": 96,
|
| 246 |
+
"G": 97,
|
| 247 |
+
"V": 98,
|
| 248 |
+
"I": 99,
|
| 249 |
+
"X": 100,
|
| 250 |
+
"omega": 101,
|
| 251 |
+
"epsilon": 102,
|
| 252 |
+
"E": 103,
|
| 253 |
+
"J": 104,
|
| 254 |
+
"bf": 105,
|
| 255 |
+
"eta": 106,
|
| 256 |
+
"v": 107,
|
| 257 |
+
"xi": 108,
|
| 258 |
+
"Q": 109,
|
| 259 |
+
"Phi": 110,
|
| 260 |
+
"quad": 111,
|
| 261 |
+
"*": 112,
|
| 262 |
+
"5": 113,
|
| 263 |
+
"\\{": 114,
|
| 264 |
+
"vec": 115,
|
| 265 |
+
"begin": 116,
|
| 266 |
+
"end": 117,
|
| 267 |
+
"Gamma": 118,
|
| 268 |
+
"K": 119,
|
| 269 |
+
"infty": 120,
|
| 270 |
+
"\\}": 121,
|
| 271 |
+
"6": 122,
|
| 272 |
+
"U": 123,
|
| 273 |
+
"rangle": 124,
|
| 274 |
+
"dot": 125,
|
| 275 |
+
"W": 126,
|
| 276 |
+
"pm": 127,
|
| 277 |
+
"Lambda": 128,
|
| 278 |
+
"Z": 129,
|
| 279 |
+
"varphi": 130,
|
| 280 |
+
"Delta": 131,
|
| 281 |
+
"w": 132,
|
| 282 |
+
"chi": 133,
|
| 283 |
+
";": 134,
|
| 284 |
+
"8": 135,
|
| 285 |
+
"\\!": 136,
|
| 286 |
+
"Omega": 137,
|
| 287 |
+
"kappa": 138,
|
| 288 |
+
"qquad": 139,
|
| 289 |
+
"cdot": 140,
|
| 290 |
+
"Psi": 141,
|
| 291 |
+
"equiv": 142,
|
| 292 |
+
"langle": 143,
|
| 293 |
+
"overline": 144,
|
| 294 |
+
">": 145,
|
| 295 |
+
"<": 146,
|
| 296 |
+
"dagger": 147,
|
| 297 |
+
"zeta": 148,
|
| 298 |
+
"varepsilon": 149,
|
| 299 |
+
"cdots": 150,
|
| 300 |
+
"rightarrow": 151,
|
| 301 |
+
"O": 152,
|
| 302 |
+
"nabla": 153,
|
| 303 |
+
"Y": 154,
|
| 304 |
+
"ldots": 155,
|
| 305 |
+
":": 156,
|
| 306 |
+
"Sigma": 157,
|
| 307 |
+
"ell": 158,
|
| 308 |
+
"7": 159,
|
| 309 |
+
"mathcal": 160,
|
| 310 |
+
"\\:": 161,
|
| 311 |
+
"!": 162,
|
| 312 |
+
"otimes": 163,
|
| 313 |
+
"prod": 164,
|
| 314 |
+
"wedge": 165,
|
| 315 |
+
"9": 166,
|
| 316 |
+
"hspace": 167,
|
| 317 |
+
"Pi": 168,
|
| 318 |
+
"hbar": 169,
|
| 319 |
+
"sim": 170,
|
| 320 |
+
"vert": 171,
|
| 321 |
+
"in": 172,
|
| 322 |
+
"Big": 173,
|
| 323 |
+
"widetilde": 174,
|
| 324 |
+
"displaystyle": 175,
|
| 325 |
+
"times": 176,
|
| 326 |
+
"Theta": 177,
|
| 327 |
+
"underline": 178,
|
| 328 |
+
"mid": 179,
|
| 329 |
+
"to": 180,
|
| 330 |
+
"dots": 181,
|
| 331 |
+
"mathbf": 182,
|
| 332 |
+
"ast": 183,
|
| 333 |
+
"leq": 184,
|
| 334 |
+
"approx": 185,
|
| 335 |
+
"star": 186,
|
| 336 |
+
"stackrel": 187,
|
| 337 |
+
"perp": 188,
|
| 338 |
+
"widehat": 189,
|
| 339 |
+
"big": 190,
|
| 340 |
+
"vartheta": 191,
|
| 341 |
+
"'": 192,
|
| 342 |
+
"Bigr": 193,
|
| 343 |
+
"geq": 194,
|
| 344 |
+
"mp": 195,
|
| 345 |
+
"Bigl": 196,
|
| 346 |
+
"dag": 197,
|
| 347 |
+
"neq": 198,
|
| 348 |
+
"simeq": 199
|
| 349 |
+
},
|
| 350 |
+
"unk_token": "[UNK]"
|
| 351 |
+
}
|
| 352 |
+
}
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==1.9.0
|
| 2 |
+
transformers==4.18.0
|
| 3 |
+
sentencepiece==0.1.96
|
| 4 |
+
|
tokenizer-wordlevel.json
ADDED
|
@@ -0,0 +1,352 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"version": "1.0",
|
| 3 |
+
"truncation": {
|
| 4 |
+
"direction": "Right",
|
| 5 |
+
"max_length": 100,
|
| 6 |
+
"strategy": "LongestFirst",
|
| 7 |
+
"stride": 0
|
| 8 |
+
},
|
| 9 |
+
"padding": {
|
| 10 |
+
"strategy": {
|
| 11 |
+
"Fixed": 100
|
| 12 |
+
},
|
| 13 |
+
"direction": "Right",
|
| 14 |
+
"pad_to_multiple_of": null,
|
| 15 |
+
"pad_id": 0,
|
| 16 |
+
"pad_type_id": 0,
|
| 17 |
+
"pad_token": "[PAD]"
|
| 18 |
+
},
|
| 19 |
+
"added_tokens": [
|
| 20 |
+
{
|
| 21 |
+
"id": 0,
|
| 22 |
+
"content": "[UNK]",
|
| 23 |
+
"single_word": false,
|
| 24 |
+
"lstrip": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
{
|
| 30 |
+
"id": 1,
|
| 31 |
+
"content": "[CLS]",
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"lstrip": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"normalized": false,
|
| 36 |
+
"special": true
|
| 37 |
+
},
|
| 38 |
+
{
|
| 39 |
+
"id": 2,
|
| 40 |
+
"content": "[SEP]",
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"lstrip": false,
|
| 43 |
+
"rstrip": false,
|
| 44 |
+
"normalized": false,
|
| 45 |
+
"special": true
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
"id": 3,
|
| 49 |
+
"content": "[PAD]",
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"lstrip": false,
|
| 52 |
+
"rstrip": false,
|
| 53 |
+
"normalized": false,
|
| 54 |
+
"special": true
|
| 55 |
+
},
|
| 56 |
+
{
|
| 57 |
+
"id": 4,
|
| 58 |
+
"content": "[MASK]",
|
| 59 |
+
"single_word": false,
|
| 60 |
+
"lstrip": false,
|
| 61 |
+
"rstrip": false,
|
| 62 |
+
"normalized": false,
|
| 63 |
+
"special": true
|
| 64 |
+
}
|
| 65 |
+
],
|
| 66 |
+
"normalizer": null,
|
| 67 |
+
"pre_tokenizer": {
|
| 68 |
+
"type": "Whitespace"
|
| 69 |
+
},
|
| 70 |
+
"post_processor": {
|
| 71 |
+
"type": "TemplateProcessing",
|
| 72 |
+
"single": [
|
| 73 |
+
{
|
| 74 |
+
"SpecialToken": {
|
| 75 |
+
"id": "[CLS]",
|
| 76 |
+
"type_id": 0
|
| 77 |
+
}
|
| 78 |
+
},
|
| 79 |
+
{
|
| 80 |
+
"Sequence": {
|
| 81 |
+
"id": "A",
|
| 82 |
+
"type_id": 0
|
| 83 |
+
}
|
| 84 |
+
},
|
| 85 |
+
{
|
| 86 |
+
"SpecialToken": {
|
| 87 |
+
"id": "[SEP]",
|
| 88 |
+
"type_id": 0
|
| 89 |
+
}
|
| 90 |
+
}
|
| 91 |
+
],
|
| 92 |
+
"pair": [
|
| 93 |
+
{
|
| 94 |
+
"SpecialToken": {
|
| 95 |
+
"id": "[CLS]",
|
| 96 |
+
"type_id": 0
|
| 97 |
+
}
|
| 98 |
+
},
|
| 99 |
+
{
|
| 100 |
+
"Sequence": {
|
| 101 |
+
"id": "A",
|
| 102 |
+
"type_id": 0
|
| 103 |
+
}
|
| 104 |
+
},
|
| 105 |
+
{
|
| 106 |
+
"SpecialToken": {
|
| 107 |
+
"id": "[SEP]",
|
| 108 |
+
"type_id": 0
|
| 109 |
+
}
|
| 110 |
+
},
|
| 111 |
+
{
|
| 112 |
+
"Sequence": {
|
| 113 |
+
"id": "B",
|
| 114 |
+
"type_id": 1
|
| 115 |
+
}
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"SpecialToken": {
|
| 119 |
+
"id": "[SEP]",
|
| 120 |
+
"type_id": 1
|
| 121 |
+
}
|
| 122 |
+
}
|
| 123 |
+
],
|
| 124 |
+
"special_tokens": {
|
| 125 |
+
"[CLS]": {
|
| 126 |
+
"id": "[CLS]",
|
| 127 |
+
"ids": [
|
| 128 |
+
1
|
| 129 |
+
],
|
| 130 |
+
"tokens": [
|
| 131 |
+
"[CLS]"
|
| 132 |
+
]
|
| 133 |
+
},
|
| 134 |
+
"[SEP]": {
|
| 135 |
+
"id": "[SEP]",
|
| 136 |
+
"ids": [
|
| 137 |
+
2
|
| 138 |
+
],
|
| 139 |
+
"tokens": [
|
| 140 |
+
"[SEP]"
|
| 141 |
+
]
|
| 142 |
+
}
|
| 143 |
+
}
|
| 144 |
+
},
|
| 145 |
+
"decoder": null,
|
| 146 |
+
"model": {
|
| 147 |
+
"type": "WordLevel",
|
| 148 |
+
"vocab": {
|
| 149 |
+
"[UNK]": 0,
|
| 150 |
+
"[CLS]": 1,
|
| 151 |
+
"[SEP]": 2,
|
| 152 |
+
"[PAD]": 3,
|
| 153 |
+
"[MASK]": 4,
|
| 154 |
+
"}": 5,
|
| 155 |
+
"{": 6,
|
| 156 |
+
"\\": 7,
|
| 157 |
+
"_": 8,
|
| 158 |
+
"^": 9,
|
| 159 |
+
"(": 10,
|
| 160 |
+
")": 11,
|
| 161 |
+
"2": 12,
|
| 162 |
+
"1": 13,
|
| 163 |
+
"-": 14,
|
| 164 |
+
"=": 15,
|
| 165 |
+
",": 16,
|
| 166 |
+
"+": 17,
|
| 167 |
+
"frac": 18,
|
| 168 |
+
"i": 19,
|
| 169 |
+
"0": 20,
|
| 170 |
+
"x": 21,
|
| 171 |
+
"n": 22,
|
| 172 |
+
".": 23,
|
| 173 |
+
"d": 24,
|
| 174 |
+
"\\,": 25,
|
| 175 |
+
"a": 26,
|
| 176 |
+
"mu": 27,
|
| 177 |
+
"left": 28,
|
| 178 |
+
"right": 29,
|
| 179 |
+
"e": 30,
|
| 180 |
+
"k": 31,
|
| 181 |
+
"c": 32,
|
| 182 |
+
"m": 33,
|
| 183 |
+
"r": 34,
|
| 184 |
+
"p": 35,
|
| 185 |
+
"3": 36,
|
| 186 |
+
"alpha": 37,
|
| 187 |
+
"t": 38,
|
| 188 |
+
"partial": 39,
|
| 189 |
+
"~": 40,
|
| 190 |
+
"l": 41,
|
| 191 |
+
"A": 42,
|
| 192 |
+
"s": 43,
|
| 193 |
+
"&": 44,
|
| 194 |
+
"4": 45,
|
| 195 |
+
"j": 46,
|
| 196 |
+
"\\;": 47,
|
| 197 |
+
"g": 48,
|
| 198 |
+
"prime": 49,
|
| 199 |
+
"]": 50,
|
| 200 |
+
"[": 51,
|
| 201 |
+
"nu": 52,
|
| 202 |
+
"z": 53,
|
| 203 |
+
"pi": 54,
|
| 204 |
+
"|": 55,
|
| 205 |
+
"b": 56,
|
| 206 |
+
"phi": 57,
|
| 207 |
+
"\\\\": 58,
|
| 208 |
+
"mathrm": 59,
|
| 209 |
+
"q": 60,
|
| 210 |
+
"operatorname": 61,
|
| 211 |
+
"cal": 62,
|
| 212 |
+
"N": 63,
|
| 213 |
+
"delta": 64,
|
| 214 |
+
"f": 65,
|
| 215 |
+
"lambda": 66,
|
| 216 |
+
"beta": 67,
|
| 217 |
+
"bar": 68,
|
| 218 |
+
"T": 69,
|
| 219 |
+
"int": 70,
|
| 220 |
+
"array": 71,
|
| 221 |
+
"R": 72,
|
| 222 |
+
"S": 73,
|
| 223 |
+
"D": 74,
|
| 224 |
+
"L": 75,
|
| 225 |
+
"M": 76,
|
| 226 |
+
"B": 77,
|
| 227 |
+
"y": 78,
|
| 228 |
+
"sigma": 79,
|
| 229 |
+
"F": 80,
|
| 230 |
+
"theta": 81,
|
| 231 |
+
"/": 82,
|
| 232 |
+
"gamma": 83,
|
| 233 |
+
"h": 84,
|
| 234 |
+
"hat": 85,
|
| 235 |
+
"psi": 86,
|
| 236 |
+
"sqrt": 87,
|
| 237 |
+
"sum": 88,
|
| 238 |
+
"u": 89,
|
| 239 |
+
"H": 90,
|
| 240 |
+
"o": 91,
|
| 241 |
+
"rho": 92,
|
| 242 |
+
"tilde": 93,
|
| 243 |
+
"tau": 94,
|
| 244 |
+
"C": 95,
|
| 245 |
+
"P": 96,
|
| 246 |
+
"G": 97,
|
| 247 |
+
"V": 98,
|
| 248 |
+
"I": 99,
|
| 249 |
+
"X": 100,
|
| 250 |
+
"omega": 101,
|
| 251 |
+
"epsilon": 102,
|
| 252 |
+
"E": 103,
|
| 253 |
+
"J": 104,
|
| 254 |
+
"bf": 105,
|
| 255 |
+
"eta": 106,
|
| 256 |
+
"v": 107,
|
| 257 |
+
"xi": 108,
|
| 258 |
+
"Q": 109,
|
| 259 |
+
"Phi": 110,
|
| 260 |
+
"quad": 111,
|
| 261 |
+
"*": 112,
|
| 262 |
+
"5": 113,
|
| 263 |
+
"\\{": 114,
|
| 264 |
+
"vec": 115,
|
| 265 |
+
"begin": 116,
|
| 266 |
+
"end": 117,
|
| 267 |
+
"Gamma": 118,
|
| 268 |
+
"K": 119,
|
| 269 |
+
"infty": 120,
|
| 270 |
+
"\\}": 121,
|
| 271 |
+
"6": 122,
|
| 272 |
+
"U": 123,
|
| 273 |
+
"rangle": 124,
|
| 274 |
+
"dot": 125,
|
| 275 |
+
"W": 126,
|
| 276 |
+
"pm": 127,
|
| 277 |
+
"Lambda": 128,
|
| 278 |
+
"Z": 129,
|
| 279 |
+
"varphi": 130,
|
| 280 |
+
"Delta": 131,
|
| 281 |
+
"w": 132,
|
| 282 |
+
"chi": 133,
|
| 283 |
+
";": 134,
|
| 284 |
+
"8": 135,
|
| 285 |
+
"\\!": 136,
|
| 286 |
+
"Omega": 137,
|
| 287 |
+
"kappa": 138,
|
| 288 |
+
"qquad": 139,
|
| 289 |
+
"cdot": 140,
|
| 290 |
+
"Psi": 141,
|
| 291 |
+
"equiv": 142,
|
| 292 |
+
"langle": 143,
|
| 293 |
+
"overline": 144,
|
| 294 |
+
">": 145,
|
| 295 |
+
"<": 146,
|
| 296 |
+
"dagger": 147,
|
| 297 |
+
"zeta": 148,
|
| 298 |
+
"varepsilon": 149,
|
| 299 |
+
"cdots": 150,
|
| 300 |
+
"rightarrow": 151,
|
| 301 |
+
"O": 152,
|
| 302 |
+
"nabla": 153,
|
| 303 |
+
"Y": 154,
|
| 304 |
+
"ldots": 155,
|
| 305 |
+
":": 156,
|
| 306 |
+
"Sigma": 157,
|
| 307 |
+
"ell": 158,
|
| 308 |
+
"7": 159,
|
| 309 |
+
"mathcal": 160,
|
| 310 |
+
"\\:": 161,
|
| 311 |
+
"!": 162,
|
| 312 |
+
"otimes": 163,
|
| 313 |
+
"prod": 164,
|
| 314 |
+
"wedge": 165,
|
| 315 |
+
"9": 166,
|
| 316 |
+
"hspace": 167,
|
| 317 |
+
"Pi": 168,
|
| 318 |
+
"hbar": 169,
|
| 319 |
+
"sim": 170,
|
| 320 |
+
"vert": 171,
|
| 321 |
+
"in": 172,
|
| 322 |
+
"Big": 173,
|
| 323 |
+
"widetilde": 174,
|
| 324 |
+
"displaystyle": 175,
|
| 325 |
+
"times": 176,
|
| 326 |
+
"Theta": 177,
|
| 327 |
+
"underline": 178,
|
| 328 |
+
"mid": 179,
|
| 329 |
+
"to": 180,
|
| 330 |
+
"dots": 181,
|
| 331 |
+
"mathbf": 182,
|
| 332 |
+
"ast": 183,
|
| 333 |
+
"leq": 184,
|
| 334 |
+
"approx": 185,
|
| 335 |
+
"star": 186,
|
| 336 |
+
"stackrel": 187,
|
| 337 |
+
"perp": 188,
|
| 338 |
+
"widehat": 189,
|
| 339 |
+
"big": 190,
|
| 340 |
+
"vartheta": 191,
|
| 341 |
+
"'": 192,
|
| 342 |
+
"Bigr": 193,
|
| 343 |
+
"geq": 194,
|
| 344 |
+
"mp": 195,
|
| 345 |
+
"Bigl": 196,
|
| 346 |
+
"dag": 197,
|
| 347 |
+
"neq": 198,
|
| 348 |
+
"simeq": 199
|
| 349 |
+
},
|
| 350 |
+
"unk_token": "[UNK]"
|
| 351 |
+
}
|
| 352 |
+
}
|
version-history.md
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
| Version | # epochs | max # tokens | vocab size | notebook and training log | Comments |
|
| 2 |
+
|---------|----------|--------------|------------|----------------------------------------------------------------------------------------------------|----------|
|
| 3 |
+
| v4 | 10 | 100 | 200 | [link](https://www.kaggle.com/code/younghoshin/finetuning-trocr/notebook?scriptVersionId=94172330) | |
|
| 4 |
+
| | | | | | |
|
| 5 |
+
| | | | | | |
|
| 6 |
+
| | | | | | |
|