Spaces:
Running
Running
Clement Vachet
commited on
Commit
·
58b5050
1
Parent(s):
577e81d
Use langchain-chroma and langchain-huggingface libraries
Browse files
app.py
CHANGED
|
@@ -3,13 +3,12 @@ import os
|
|
| 3 |
|
| 4 |
from langchain_community.document_loaders import PyPDFLoader
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
-
from
|
| 7 |
from langchain.chains import ConversationalRetrievalChain
|
| 8 |
-
from
|
| 9 |
-
from langchain_community.llms import HuggingFacePipeline
|
| 10 |
from langchain.chains import ConversationChain
|
| 11 |
from langchain.memory import ConversationBufferMemory
|
| 12 |
-
from
|
| 13 |
|
| 14 |
from pathlib import Path
|
| 15 |
import chromadb
|
|
@@ -23,7 +22,6 @@ import accelerate
|
|
| 23 |
import re
|
| 24 |
|
| 25 |
|
| 26 |
-
|
| 27 |
# default_persist_directory = './chroma_HF/'
|
| 28 |
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
|
| 29 |
"google/gemma-7b-it","google/gemma-2b-it", \
|
|
@@ -34,8 +32,11 @@ list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instru
|
|
| 34 |
]
|
| 35 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
| 36 |
|
|
|
|
| 37 |
# Load PDF document and create doc splits
|
| 38 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
|
|
|
|
|
| 39 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
| 40 |
pages = []
|
| 41 |
for loader in loaders:
|
|
@@ -49,7 +50,13 @@ def load_doc(list_file_path, chunk_size, chunk_overlap):
|
|
| 49 |
|
| 50 |
# Create vector database
|
| 51 |
def create_db(splits, collection_name):
|
| 52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
new_client = chromadb.EphemeralClient()
|
| 54 |
vectordb = Chroma.from_documents(
|
| 55 |
documents=splits,
|
|
@@ -61,23 +68,19 @@ def create_db(splits, collection_name):
|
|
| 61 |
return vectordb
|
| 62 |
|
| 63 |
|
| 64 |
-
# Load vector database
|
| 65 |
-
def load_db():
|
| 66 |
-
embedding = HuggingFaceEmbeddings()
|
| 67 |
-
vectordb = Chroma(
|
| 68 |
-
# persist_directory=default_persist_directory,
|
| 69 |
-
embedding_function=embedding)
|
| 70 |
-
return vectordb
|
| 71 |
-
|
| 72 |
|
| 73 |
# Initialize langchain LLM chain
|
| 74 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
|
|
|
|
|
|
| 75 |
progress(0.1, desc="Initializing HF tokenizer...")
|
| 76 |
# HuggingFaceHub uses HF inference endpoints
|
| 77 |
progress(0.5, desc="Initializing HF Hub...")
|
| 78 |
# Use of trust_remote_code as model_kwargs
|
| 79 |
# Warning: langchain issue
|
| 80 |
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
|
|
|
|
|
|
| 81 |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
| 82 |
llm = HuggingFaceEndpoint(
|
| 83 |
repo_id=llm_model,
|
|
@@ -132,6 +135,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
| 132 |
max_new_tokens = max_tokens,
|
| 133 |
top_k = top_k,
|
| 134 |
)
|
|
|
|
| 135 |
|
| 136 |
progress(0.75, desc="Defining buffer memory...")
|
| 137 |
memory = ConversationBufferMemory(
|
|
|
|
| 3 |
|
| 4 |
from langchain_community.document_loaders import PyPDFLoader
|
| 5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
| 6 |
+
from langchain_chroma import Chroma
|
| 7 |
from langchain.chains import ConversationalRetrievalChain
|
| 8 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
|
|
|
| 9 |
from langchain.chains import ConversationChain
|
| 10 |
from langchain.memory import ConversationBufferMemory
|
| 11 |
+
from langchain_huggingface import HuggingFaceEndpoint
|
| 12 |
|
| 13 |
from pathlib import Path
|
| 14 |
import chromadb
|
|
|
|
| 22 |
import re
|
| 23 |
|
| 24 |
|
|
|
|
| 25 |
# default_persist_directory = './chroma_HF/'
|
| 26 |
list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
|
| 27 |
"google/gemma-7b-it","google/gemma-2b-it", \
|
|
|
|
| 32 |
]
|
| 33 |
list_llm_simple = [os.path.basename(llm) for llm in list_llm]
|
| 34 |
|
| 35 |
+
|
| 36 |
# Load PDF document and create doc splits
|
| 37 |
def load_doc(list_file_path, chunk_size, chunk_overlap):
|
| 38 |
+
"""Load PDF document and create doc splits"""
|
| 39 |
+
|
| 40 |
loaders = [PyPDFLoader(x) for x in list_file_path]
|
| 41 |
pages = []
|
| 42 |
for loader in loaders:
|
|
|
|
| 50 |
|
| 51 |
# Create vector database
|
| 52 |
def create_db(splits, collection_name):
|
| 53 |
+
"""Create embeddings and vector database"""
|
| 54 |
+
|
| 55 |
+
embedding = HuggingFaceEmbeddings(
|
| 56 |
+
model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2",
|
| 57 |
+
model_kwargs={'device': 'cpu'},
|
| 58 |
+
encode_kwargs={'normalize_embeddings': False}
|
| 59 |
+
)
|
| 60 |
new_client = chromadb.EphemeralClient()
|
| 61 |
vectordb = Chroma.from_documents(
|
| 62 |
documents=splits,
|
|
|
|
| 68 |
return vectordb
|
| 69 |
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
|
| 72 |
# Initialize langchain LLM chain
|
| 73 |
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
|
| 74 |
+
"""Initialize Langchain LLM chain"""
|
| 75 |
+
|
| 76 |
progress(0.1, desc="Initializing HF tokenizer...")
|
| 77 |
# HuggingFaceHub uses HF inference endpoints
|
| 78 |
progress(0.5, desc="Initializing HF Hub...")
|
| 79 |
# Use of trust_remote_code as model_kwargs
|
| 80 |
# Warning: langchain issue
|
| 81 |
# URL: https://github.com/langchain-ai/langchain/issues/6080
|
| 82 |
+
|
| 83 |
+
WARNING - simplify LLM use
|
| 84 |
if llm_model == "mistralai/Mixtral-8x7B-Instruct-v0.1":
|
| 85 |
llm = HuggingFaceEndpoint(
|
| 86 |
repo_id=llm_model,
|
|
|
|
| 135 |
max_new_tokens = max_tokens,
|
| 136 |
top_k = top_k,
|
| 137 |
)
|
| 138 |
+
|
| 139 |
|
| 140 |
progress(0.75, desc="Defining buffer memory...")
|
| 141 |
memory = ConversationBufferMemory(
|