Spaces:
Running
Running
Clement Vachet
commited on
Commit
·
26a21fc
1
Parent(s):
ca60bef
Add api token argument
Browse files
app.py
CHANGED
|
@@ -10,6 +10,7 @@ from langchain.chains import ConversationChain
|
|
| 10 |
from langchain.memory import ConversationBufferMemory
|
| 11 |
from langchain_huggingface import HuggingFaceEndpoint
|
| 12 |
|
|
|
|
| 13 |
from pathlib import Path
|
| 14 |
import chromadb
|
| 15 |
from unidecode import unidecode
|
|
@@ -21,6 +22,12 @@ import tqdm
|
|
| 21 |
import accelerate
|
| 22 |
import re
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
# default_persist_directory = './chroma_HF/'
|
| 26 |
# list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
|
|
@@ -90,6 +97,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
| 90 |
# max_new_tokens = max_tokens,
|
| 91 |
# top_k = top_k,
|
| 92 |
# load_in_8bit = True,
|
|
|
|
| 93 |
# )
|
| 94 |
# elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
|
| 95 |
# raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
|
|
@@ -98,6 +106,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
| 98 |
# temperature = temperature,
|
| 99 |
# max_new_tokens = max_tokens,
|
| 100 |
# top_k = top_k,
|
|
|
|
| 101 |
# )
|
| 102 |
# elif llm_model == "microsoft/phi-2":
|
| 103 |
# # raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
|
|
@@ -109,6 +118,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
| 109 |
# top_k = top_k,
|
| 110 |
# trust_remote_code = True,
|
| 111 |
# torch_dtype = "auto",
|
|
|
|
| 112 |
# )
|
| 113 |
# elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
| 114 |
# llm = HuggingFaceEndpoint(
|
|
@@ -117,6 +127,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
| 117 |
# temperature = temperature,
|
| 118 |
# max_new_tokens = 250,
|
| 119 |
# top_k = top_k,
|
|
|
|
| 120 |
# )
|
| 121 |
# elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
| 122 |
# raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
|
@@ -126,6 +137,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
| 126 |
# temperature = temperature,
|
| 127 |
# max_new_tokens = max_tokens,
|
| 128 |
# top_k = top_k,
|
|
|
|
| 129 |
# )
|
| 130 |
# else:
|
| 131 |
# llm = HuggingFaceEndpoint(
|
|
@@ -135,8 +147,8 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
| 135 |
# temperature = temperature,
|
| 136 |
# max_new_tokens = max_tokens,
|
| 137 |
# top_k = top_k,
|
|
|
|
| 138 |
# )
|
| 139 |
-
|
| 140 |
llm = HuggingFaceEndpoint(
|
| 141 |
repo_id=llm_model,
|
| 142 |
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
|
@@ -144,6 +156,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
| 144 |
temperature = temperature,
|
| 145 |
max_new_tokens = max_tokens,
|
| 146 |
top_k = top_k,
|
|
|
|
| 147 |
)
|
| 148 |
|
| 149 |
progress(0.75, desc="Defining buffer memory...")
|
|
@@ -166,6 +179,7 @@ def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, pr
|
|
| 166 |
verbose=False,
|
| 167 |
)
|
| 168 |
progress(0.9, desc="Done!")
|
|
|
|
| 169 |
return qa_chain
|
| 170 |
|
| 171 |
|
|
@@ -236,7 +250,7 @@ def conversation(qa_chain, message, history):
|
|
| 236 |
#print("formatted_chat_history",formatted_chat_history)
|
| 237 |
|
| 238 |
# Generate response using QA chain
|
| 239 |
-
response = qa_chain({"question": message, "chat_history": formatted_chat_history})
|
| 240 |
response_answer = response["answer"]
|
| 241 |
if response_answer.find("Helpful Answer:") != -1:
|
| 242 |
response_answer = response_answer.split("Helpful Answer:")[-1]
|
|
|
|
| 10 |
from langchain.memory import ConversationBufferMemory
|
| 11 |
from langchain_huggingface import HuggingFaceEndpoint
|
| 12 |
|
| 13 |
+
|
| 14 |
from pathlib import Path
|
| 15 |
import chromadb
|
| 16 |
from unidecode import unidecode
|
|
|
|
| 22 |
import accelerate
|
| 23 |
import re
|
| 24 |
|
| 25 |
+
from dotenv import load_dotenv
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
# Load environment file - HuggingFace API key
|
| 29 |
+
_ = load_dotenv()
|
| 30 |
+
huggingfacehub_api_token = os.environ.get("HUGGINGFACE_API_KEY")
|
| 31 |
|
| 32 |
# default_persist_directory = './chroma_HF/'
|
| 33 |
# list_llm = ["mistralai/Mistral-7B-Instruct-v0.2", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.1", \
|
|
|
|
| 97 |
# max_new_tokens = max_tokens,
|
| 98 |
# top_k = top_k,
|
| 99 |
# load_in_8bit = True,
|
| 100 |
+
# huggingfacehub_api_token=huggingfacehub_api_token,
|
| 101 |
# )
|
| 102 |
# elif llm_model in ["HuggingFaceH4/zephyr-7b-gemma-v0.1","mosaicml/mpt-7b-instruct"]:
|
| 103 |
# raise gr.Error("LLM model is too large to be loaded automatically on free inference endpoint")
|
|
|
|
| 106 |
# temperature = temperature,
|
| 107 |
# max_new_tokens = max_tokens,
|
| 108 |
# top_k = top_k,
|
| 109 |
+
# huggingfacehub_api_token=huggingfacehub_api_token,
|
| 110 |
# )
|
| 111 |
# elif llm_model == "microsoft/phi-2":
|
| 112 |
# # raise gr.Error("phi-2 model requires 'trust_remote_code=True', currently not supported by langchain HuggingFaceHub...")
|
|
|
|
| 118 |
# top_k = top_k,
|
| 119 |
# trust_remote_code = True,
|
| 120 |
# torch_dtype = "auto",
|
| 121 |
+
# huggingfacehub_api_token=huggingfacehub_api_token,
|
| 122 |
# )
|
| 123 |
# elif llm_model == "TinyLlama/TinyLlama-1.1B-Chat-v1.0":
|
| 124 |
# llm = HuggingFaceEndpoint(
|
|
|
|
| 127 |
# temperature = temperature,
|
| 128 |
# max_new_tokens = 250,
|
| 129 |
# top_k = top_k,
|
| 130 |
+
# huggingfacehub_api_token=huggingfacehub_api_token,
|
| 131 |
# )
|
| 132 |
# elif llm_model == "meta-llama/Llama-2-7b-chat-hf":
|
| 133 |
# raise gr.Error("Llama-2-7b-chat-hf model requires a Pro subscription...")
|
|
|
|
| 137 |
# temperature = temperature,
|
| 138 |
# max_new_tokens = max_tokens,
|
| 139 |
# top_k = top_k,
|
| 140 |
+
# huggingfacehub_api_token=huggingfacehub_api_token,
|
| 141 |
# )
|
| 142 |
# else:
|
| 143 |
# llm = HuggingFaceEndpoint(
|
|
|
|
| 147 |
# temperature = temperature,
|
| 148 |
# max_new_tokens = max_tokens,
|
| 149 |
# top_k = top_k,
|
| 150 |
+
# huggingfacehub_api_token=huggingfacehub_api_token,
|
| 151 |
# )
|
|
|
|
| 152 |
llm = HuggingFaceEndpoint(
|
| 153 |
repo_id=llm_model,
|
| 154 |
# model_kwargs={"temperature": temperature, "max_new_tokens": max_tokens, "top_k": top_k, "trust_remote_code": True, "torch_dtype": "auto"}
|
|
|
|
| 156 |
temperature = temperature,
|
| 157 |
max_new_tokens = max_tokens,
|
| 158 |
top_k = top_k,
|
| 159 |
+
huggingfacehub_api_token=huggingfacehub_api_token,
|
| 160 |
)
|
| 161 |
|
| 162 |
progress(0.75, desc="Defining buffer memory...")
|
|
|
|
| 179 |
verbose=False,
|
| 180 |
)
|
| 181 |
progress(0.9, desc="Done!")
|
| 182 |
+
|
| 183 |
return qa_chain
|
| 184 |
|
| 185 |
|
|
|
|
| 250 |
#print("formatted_chat_history",formatted_chat_history)
|
| 251 |
|
| 252 |
# Generate response using QA chain
|
| 253 |
+
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
|
| 254 |
response_answer = response["answer"]
|
| 255 |
if response_answer.find("Helpful Answer:") != -1:
|
| 256 |
response_answer = response_answer.split("Helpful Answer:")[-1]
|