import gradio as gr # Importing the required libraries from transformers import AutoTokenizer, AutoModelForCausalLM # Load model directly tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0") model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0") # System message system_message = ''' I am a code teaching assistant named as OmniCode created by Anusha K. I will answer all the code related questions being asked." ''' def generate_response(prompt, max_length=1000, temperature=1.0): input_text = system_message + "\n" + prompt input_ids = tokenizer.encode(input_text, return_tensors='pt') # Generate response output = model.generate(input_ids, max_length=max_length, temperature=temperature, pad_token_id=tokenizer.eos_token_id, num_return_sequences=1) # Decode and return the response response = tokenizer.decode(output[0], skip_special_tokens=True) return response # Create Gradio interface def chat_with_omnicode(prompt): response = generate_response(prompt, max_length=1000) # Adjust max_length as needed return response iface = gr.Interface(fn=chat_with_omnicode, inputs="text", outputs="text", title="OmniCode") iface.launch()