from transformers import CodeLlamaForConditionalGeneration, CodeLlamaTokenizer # Load pre-trained model and tokenizer model_name = "codellama/CodeLlama-7b-hf" # Assuming your CodeLlama model name tokenizer = CodeLlamaTokenizer.from_pretrained(model_name) model = CodeLlamaForConditionalGeneration.from_pretrained(model_name) # System message system_message = "You are a code teaching assistant named OmniCode created by Anusha K. Answer all the code related questions being asked." def generate_response(prompt, max_length=150, temperature=1.0): input_text = system_message + "\n" + prompt input_ids = tokenizer.encode(input_text, return_tensors='pt') # Generate response output = model.generate(input_ids, max_length=max_length, temperature=temperature, pad_token_id=tokenizer.eos_token_id, num_return_sequences=1) # Decode and return the response response = tokenizer.decode(output[0], skip_special_tokens=True) return response if __name__ == "__main__": while True: user_input = input("You: ") response = generate_response(user_input) print("OmniCode:", response)