import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer # Load your text generation model from Hugging Face using its identifier model_identifier = "curiouscurrent/omnicode" model = AutoModelForCausalLM.from_pretrained(model_identifier) tokenizer = AutoTokenizer.from_pretrained(model_identifier) history = [] def generate_response(prompt): history.append(prompt) final_prompt = "\n".join(history) # Tokenize input prompt input_ids = tokenizer.encode(final_prompt, return_tensors="pt", max_length=512, truncation=True) # Generate response output_ids = model.generate(input_ids, max_length=100, num_return_sequences=1) response = tokenizer.decode(output_ids[0], skip_special_tokens=True) return response # Create Gradio interface input_prompt = gr.inputs.Textbox(lines=4, label="Input Prompt") output_text = gr.outputs.Textbox(label="Response") gr.Interface( generate_response, inputs=input_prompt, outputs=output_text, title="OmniCode", description="Multi programming coding assistant", theme="compact" ).launch()