Spaces:
Sleeping
Sleeping
File size: 1,282 Bytes
e1348f5 4450af9 e1348f5 4827221 4450af9 eb6299e 4450af9 bf82c59 eb6299e a7322e4 eb6299e bf82c59 a7322e4 eb6299e a7322e4 bf82c59 a7322e4 eb6299e bf82c59 eb6299e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
from transformers import AutoTokenizer, AutoModelForCausalLM
# Load model directly
tokenizer = AutoTokenizer.from_pretrained("distilbert/distilgpt2")
model = AutoModelForCausalLM.from_pretrained("distilbert/distilgpt2")
# System message
system_message = "You are a code teaching assistant named OmniCode created by Anusha K. Answer all the code related questions being asked."
def generate_response(prompt, max_length=150, temperature=1.0):
input_text = system_message + "\n" + prompt
input_ids = tokenizer.encode(input_text, return_tensors='pt')
# Generate response
output = model.generate(input_ids,
max_length=max_length,
temperature=temperature,
pad_token_id=tokenizer.eos_token_id,
num_return_sequences=1)
# Decode and return the response
response = tokenizer.decode(output[0], skip_special_tokens=True)
return response
if __name__ == "__main__":
while True:
user_input = input("You: ")
if not user_input: # Check if user input is empty
print("Exiting OmniCode. Thank you for using me!")
break
response = generate_response(user_input)
print("OmniCode:", response)
|