import gradio as gr import os import time import sys import subprocess # Clone and install faster-whisper from GitHub subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True) subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True) # Add the faster-whisper directory to the Python path sys.path.append("./faster-whisper") from faster_whisper import WhisperModel from faster_whisper.transcribe import BatchedInferencePipeline def transcribe_audio(audio_path, batch_size): # Initialize the model model = WhisperModel("cstr/whisper-large-v3-turbo-int8_float32", device="auto", compute_type="int8") batched_model = BatchedInferencePipeline(model=model) # Benchmark transcription time start_time = time.time() segments, info = batched_model.transcribe(audio_path, batch_size=batch_size) end_time = time.time() # Generate transcription transcription = "" for segment in segments: transcription += f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n" # Calculate metrics transcription_time = end_time - start_time real_time_factor = info.duration / transcription_time audio_file_size = os.path.getsize(audio_path) / (1024 * 1024) # Size in MB # Prepare output output = f"Transcription:\n\n{transcription}\n" output += f"\nLanguage: {info.language}, Probability: {info.language_probability:.2f}\n" output += f"Duration: {info.duration:.2f}s, Duration after VAD: {info.duration_after_vad:.2f}s\n" output += f"Transcription time: {transcription_time:.2f} seconds\n" output += f"Real-time factor: {real_time_factor:.2f}x\n" output += f"Audio file size: {audio_file_size:.2f} MB" return output # Gradio interface iface = gr.Interface( fn=transcribe_audio, inputs=[ gr.Audio(type="filepath", label="Upload Audio File"), gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size") ], outputs=gr.Textbox(label="Transcription and Metrics"), title="Faster Whisper Transcription", description="Upload an audio file to transcribe using Faster Whisper v3 turbo int8. Adjust the batch size for performance tuning.", examples=[["path/to/example/audio.mp3", 16]], ) iface.launch()