Spaces:
Running
Running
File size: 24,825 Bytes
0bb0d8e 87f3409 d990dd0 da9138c 7ac4ac2 da9138c 64259e4 acd8816 0bb0d8e a3dba94 acd8816 16bc3e4 a8b126b 26eb097 a8b126b 16bc3e4 a8b126b 16bc3e4 acd8816 16bc3e4 d274746 516bec5 da9138c 57968e0 4b50bd3 516bec5 4b50bd3 5f48e16 4b50bd3 516bec5 4b50bd3 516bec5 4b50bd3 516bec5 5f48e16 4b50bd3 d274746 516bec5 89cebe2 516bec5 d274746 89cebe2 d274746 516bec5 89cebe2 d274746 57968e0 d274746 acd8816 a96aeb1 57968e0 4b50bd3 a96aeb1 5f48e16 89cebe2 5f48e16 89cebe2 5f48e16 89cebe2 5f48e16 89cebe2 5f48e16 89cebe2 5f48e16 89cebe2 a96aeb1 89cebe2 57968e0 89cebe2 a96aeb1 d274746 57968e0 d274746 57968e0 d274746 a96aeb1 57968e0 a96aeb1 64259e4 a96aeb1 64259e4 57968e0 a96aeb1 57968e0 a96aeb1 57968e0 a96aeb1 64259e4 57968e0 d274746 57968e0 d274746 89cebe2 d274746 516bec5 5f48e16 516bec5 5f48e16 516bec5 57968e0 89cebe2 5f48e16 89cebe2 acd8816 d274746 89cebe2 57968e0 89cebe2 d274746 89cebe2 d274746 64259e4 516bec5 89cebe2 516bec5 89cebe2 516bec5 89cebe2 516bec5 64259e4 acd8816 516bec5 acd8816 d680d0f 516bec5 d680d0f 516bec5 d680d0f 516bec5 d680d0f 516bec5 57968e0 26eb097 4b50bd3 d680d0f 516bec5 e922c51 4b50bd3 89cebe2 4b50bd3 e922c51 516bec5 e922c51 516bec5 a8b126b 516bec5 4b50bd3 a96aeb1 4b50bd3 e922c51 64259e4 516bec5 26eb097 d811f00 64259e4 4b50bd3 516bec5 4b50bd3 516bec5 4b50bd3 89cebe2 4b50bd3 89cebe2 4b50bd3 516bec5 89cebe2 4b50bd3 516bec5 4b50bd3 1c4f98a 4b50bd3 a8b126b 4b50bd3 a8b126b 1c4f98a a96aeb1 64259e4 acd8816 d274746 64259e4 26eb097 d274746 4b50bd3 d274746 acd8816 26eb097 a96aeb1 d274746 26eb097 a96aeb1 26eb097 d274746 a96aeb1 89cebe2 516bec5 e922c51 ae4be5c d5bbd76 4b50bd3 834c15f d5bbd76 834c15f d5bbd76 e922c51 a3dba94 d5bbd76 ed10fe0 516bec5 4f55f4b 4b50bd3 d5bbd76 a3dba94 dbb0e1e a3dba94 d5bbd76 a3dba94 d5bbd76 4b50bd3 d5bbd76 1c4f98a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 |
import gradio as gr
import os
import time
import sys
import io
import tempfile
import subprocess
import requests
from urllib.parse import urlparse
from pydub import AudioSegment
import logging
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import yt_dlp
class LogCapture(io.StringIO):
def __init__(self, callback):
super().__init__()
self.callback = callback
def write(self, s):
super().write(s)
self.callback(s)
logging.basicConfig(level=logging.INFO)
# Clone and install faster-whisper from GitHub
try:
subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True)
subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True)
except subprocess.CalledProcessError as e:
logging.error(f"Error during faster-whisper installation: {e}")
sys.exit(1)
sys.path.append("./faster-whisper")
from faster_whisper import WhisperModel
from faster_whisper.transcribe import BatchedInferencePipeline
device = "cuda:0" if torch.cuda.is_available() else "cpu"
def download_audio(url, method_choice):
"""
Downloads audio from a given URL using the specified method.
Args:
url (str): The URL of the audio.
method_choice (str): The method to use for downloading audio.
Returns:
tuple: (path to the downloaded audio file, is_temp_file), or (error message, False).
"""
parsed_url = urlparse(url)
logging.info(f"Downloading audio from URL: {url} using method: {method_choice}")
try:
if 'youtube.com' in parsed_url.netloc or 'youtu.be' in parsed_url.netloc:
# Use YouTube download methods
audio_file = download_youtube_audio(url, method_choice)
elif parsed_url.scheme == 'rtsp':
# Use RTSP download methods
audio_file = download_rtsp_audio(url)
else:
# Use direct download methods
audio_file = download_direct_audio(url, method_choice)
if not audio_file or not os.path.exists(audio_file):
raise Exception(f"Failed to download audio from {url}")
return audio_file, True # The file is a temporary file
except Exception as e:
logging.error(f"Error downloading audio: {str(e)}")
return f"Error: {str(e)}", False
def download_rtsp_audio(url):
"""
Downloads audio from an RTSP URL using FFmpeg.
Args:
url (str): The RTSP URL.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info("Using FFmpeg to download RTSP stream")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['ffmpeg', '-i', url, '-acodec', 'libmp3lame', '-ab', '192k', '-y', output_file]
try:
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
logging.info(f"Downloaded RTSP audio to: {output_file}")
return output_file
except Exception as e:
logging.error(f"Error downloading RTSP audio: {str(e)}")
return None
def download_youtube_audio(url, method_choice):
"""
Downloads audio from a YouTube URL using the specified method.
Args:
url (str): The YouTube URL.
method_choice (str): The method to use for downloading ('yt-dlp', 'pytube').
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
methods = {
'yt-dlp': yt_dlp_method,
'pytube': pytube_method,
}
method = methods.get(method_choice)
if method is None:
logging.warning(f"Invalid download method for YouTube: {method_choice}. Defaulting to 'yt-dlp'.")
method = yt_dlp_method
try:
logging.info(f"Attempting to download YouTube audio using {method_choice}")
return method(url)
except Exception as e:
logging.error(f"Error downloading using {method_choice}: {str(e)}")
return None
def youtube_dl_method(url):
logging.info("Using yt-dlp method")
try:
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(id)s.%(ext)s',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
output_file = f"{info['id']}.mp3"
logging.info(f"Downloaded YouTube audio: {output_file}")
return output_file
except Exception as e:
logging.error(f"Error in youtube_dl_method: {str(e)}")
return None
def yt_dlp_direct_method(url):
"""
Downloads audio using yt-dlp (supports various protocols and sites).
Args:
url (str): The URL of the audio or webpage containing audio.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info("Using yt-dlp direct method")
output_file = tempfile.mktemp(suffix='.mp3')
ydl_opts = {
'format': 'bestaudio/best',
'outtmpl': output_file,
'quiet': True,
'no_warnings': True,
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
}
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
ydl.download([url])
logging.info(f"Downloaded audio to: {output_file}")
return output_file
except Exception as e:
logging.error(f"Error in yt_dlp_direct_method: {str(e)}")
return None
def pytube_method(url):
"""
Downloads audio using pytube.
Args:
url (str): The YouTube URL.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info("Using pytube method")
try:
from pytube import YouTube
yt = YouTube(url)
audio_stream = yt.streams.filter(only_audio=True).first()
out_file = audio_stream.download()
base, ext = os.path.splitext(out_file)
new_file = base + '.mp3'
os.rename(out_file, new_file)
logging.info(f"Downloaded and converted audio to: {new_file}")
return new_file
except Exception as e:
logging.error(f"Error in pytube_method: {str(e)}")
return None
def youtube_dl_classic_method(url):
logging.info("Using youtube-dl classic method")
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(id)s.%(ext)s',
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
logging.info(f"Downloaded YouTube audio: {info['id']}.mp3")
return f"{info['id']}.mp3"
def youtube_dl_alternative_method(url):
logging.info("Using yt-dlp alternative method")
ydl_opts = {
'format': 'bestaudio/best',
'postprocessors': [{
'key': 'FFmpegExtractAudio',
'preferredcodec': 'mp3',
'preferredquality': '192',
}],
'outtmpl': '%(id)s.%(ext)s',
'no_warnings': True,
'quiet': True,
'no_check_certificate': True,
'prefer_insecure': True,
}
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
info = ydl.extract_info(url, download=True)
logging.info(f"Downloaded YouTube audio: {info['id']}.mp3")
return f"{info['id']}.mp3"
def ffmpeg_method(url):
logging.info("Using ffmpeg method")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['ffmpeg', '-i', url, '-vn', '-acodec', 'libmp3lame', '-q:a', '2', output_file]
subprocess.run(command, check=True, capture_output=True)
logging.info(f"Downloaded and converted audio to: {output_file}")
return output_file
def aria2_method(url):
logging.info("Using aria2 method")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['aria2c', '--split=4', '--max-connection-per-server=4', '--out', output_file, url]
subprocess.run(command, check=True, capture_output=True)
logging.info(f"Downloaded audio to: {output_file}")
return output_file
def requests_method(url):
"""
Downloads audio using the requests library.
Args:
url (str): The URL of the audio file.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
try:
response = requests.get(url, stream=True)
if response.status_code == 200:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
for chunk in response.iter_content(chunk_size=8192):
if chunk:
temp_file.write(chunk)
logging.info(f"Downloaded direct audio to: {temp_file.name}")
return temp_file.name
else:
logging.error(f"Failed to download audio from {url} with status code {response.status_code}")
return None
except Exception as e:
logging.error(f"Error in requests_method: {str(e)}")
return None
def download_direct_audio(url, method_choice):
"""
Downloads audio from a direct URL or podcast URL using the specified method.
Args:
url (str): The direct URL of the audio file.
method_choice (str): The method to use for downloading ('wget', 'requests', 'yt-dlp', 'ffmpeg', 'aria2').
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info(f"Downloading direct audio from: {url} using method: {method_choice}")
methods = {
'wget': wget_method,
'requests': requests_method,
'yt-dlp': yt_dlp_direct_method,
'ffmpeg': ffmpeg_method,
'aria2': aria2_method,
}
method = methods.get(method_choice)
if method is None:
logging.warning(f"Invalid download method: {method_choice}. Defaulting to 'requests'.")
method = requests_method
try:
return method(url)
except Exception as e:
logging.error(f"Error downloading direct audio: {str(e)}")
return None
def wget_method(url):
"""
Downloads audio using the wget command-line tool.
Args:
url (str): The URL of the audio file.
Returns:
str: Path to the downloaded audio file, or None if failed.
"""
logging.info("Using wget method")
output_file = tempfile.mktemp(suffix='.mp3')
command = ['wget', '-O', output_file, url]
try:
subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
logging.info(f"Downloaded audio to: {output_file}")
return output_file
except Exception as e:
logging.error(f"Error in wget_method: {str(e)}")
return None
def trim_audio(audio_path, start_time, end_time):
"""
Trims an audio file to the specified start and end times using pydub.
Args:
audio_path (str): Path to the audio file.
start_time (float): Start time in seconds.
end_time (float): End time in seconds.
Returns:
str: Path to the trimmed audio file.
Raises:
gr.Error: If invalid start or end times are provided or if FFmpeg is not found.
"""
try:
logging.info(f"Trimming audio from {start_time} to {end_time}")
audio = AudioSegment.from_file(audio_path)
audio_duration = len(audio) / 1000 # Duration in seconds
# Default start and end times if None
if start_time is None:
start_time = 0
if end_time is None or end_time > audio_duration:
end_time = audio_duration
# Validate times
if start_time < 0 or end_time <= 0:
raise gr.Error("Start time and end time must be positive.")
if start_time >= end_time:
raise gr.Error("End time must be greater than start time.")
if start_time > audio_duration:
raise gr.Error("Start time exceeds audio duration.")
trimmed_audio = audio[start_time * 1000:end_time * 1000]
with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio_file:
trimmed_audio.export(temp_audio_file.name, format="wav")
logging.info(f"Trimmed audio saved to: {temp_audio_file.name}")
return temp_audio_file.name
except FileNotFoundError as e:
logging.error(f"FFmpeg not found: {str(e)}")
raise gr.Error("FFmpeg not found. Please ensure that FFmpeg is installed and in your system PATH.")
except Exception as e:
logging.error(f"Error trimming audio: {str(e)}")
raise gr.Error(f"Error trimming audio: {str(e)}")
def save_transcription(transcription):
"""
Saves the transcription text to a temporary file.
Args:
transcription (str): The transcription text.
Returns:
str: The path to the transcription file.
"""
with tempfile.NamedTemporaryFile(delete=False, suffix='.txt', mode='w', encoding='utf-8') as temp_file:
temp_file.write(transcription)
logging.info(f"Transcription saved to: {temp_file.name}")
return temp_file.name
def get_model_options(pipeline_type):
"""
Returns a list of model IDs based on the selected pipeline type.
Args:
pipeline_type (str): The type of pipeline ('faster-batched', 'faster-sequenced', 'transformers').
Returns:
list: A list of model IDs.
"""
if pipeline_type == "faster-batched":
return ["cstr/whisper-large-v3-turbo-int8_float32", "SYSTRAN/faster-whisper-large-v1", "GalaktischeGurke/primeline-whisper-large-v3-german-ct2"]
elif pipeline_type == "faster-sequenced":
return ["SYSTRAN/faster-whisper-large-v1", "GalaktischeGurke/primeline-whisper-large-v3-german-ct2"]
elif pipeline_type == "transformers":
return ["openai/whisper-large-v3", "openai/whisper-large-v2"]
else:
return []
loaded_models = {}
def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, download_method, start_time=None, end_time=None, verbose=False):
"""
Transcribes audio from a given source using the specified pipeline and model.
Args:
input_source (str or file): URL of audio, path to local file, or uploaded file object.
pipeline_type (str): Type of pipeline to use ('faster-batched', 'faster-sequenced', or 'transformers').
model_id (str): The ID of the model to use.
dtype (str): Data type for model computations ('int8', 'float16', or 'float32').
batch_size (int): Batch size for transcription.
download_method (str): Method to use for downloading audio.
start_time (float, optional): Start time in seconds for trimming audio.
end_time (float, optional): End time in seconds for trimming audio.
verbose (bool, optional): Whether to output verbose logging.
Yields:
Tuple[str, str, str or None]: Metrics and messages, transcription text, path to transcription file.
"""
try:
if verbose:
logging.getLogger().setLevel(logging.INFO)
else:
logging.getLogger().setLevel(logging.WARNING)
logging.info(f"Transcription parameters: pipeline_type={pipeline_type}, model_id={model_id}, dtype={dtype}, batch_size={batch_size}, download_method={download_method}")
verbose_messages = f"Starting transcription with parameters:\nPipeline Type: {pipeline_type}\nModel ID: {model_id}\nData Type: {dtype}\nBatch Size: {batch_size}\nDownload Method: {download_method}\n"
if verbose:
yield verbose_messages, "", None
# Determine if input_source is a URL or file
audio_path = None
is_temp_file = False
if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
# Input source is a URL
audio_path, is_temp_file = download_audio(input_source, download_method)
if not audio_path or audio_path.startswith("Error"):
yield f"Error downloading audio: {audio_path}", "", None
return
elif isinstance(input_source, str) and os.path.exists(input_source):
# Input source is a local file path
audio_path = input_source
is_temp_file = False
elif hasattr(input_source, 'name'):
# Input source is an uploaded file object
audio_path = input_source.name
is_temp_file = False
else:
yield "No valid audio source provided.", "", None
return
# Convert start_time and end_time to float or None
start_time = float(start_time) if start_time else None
end_time = float(end_time) if end_time else None
if start_time is not None or end_time is not None:
audio_path = trim_audio(audio_path, start_time, end_time)
is_temp_file = True # The trimmed audio is a temporary file
verbose_messages += f"Audio trimmed from {start_time} to {end_time}\n"
if verbose:
yield verbose_messages, "", None
# Model caching
model_key = (pipeline_type, model_id, dtype)
if model_key in loaded_models:
model_or_pipeline = loaded_models[model_key]
logging.info("Loaded model from cache")
else:
if pipeline_type == "faster-batched":
model = WhisperModel(model_id, device=device, compute_type=dtype)
model_or_pipeline = BatchedInferencePipeline(model=model)
elif pipeline_type == "faster-sequenced":
model_or_pipeline = WhisperModel(model_id, device=device, compute_type=dtype)
elif pipeline_type == "transformers":
# Adjust torch_dtype based on dtype and device
if dtype == "float16" and device == "cpu":
torch_dtype = torch.float32
elif dtype == "float16":
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
model = AutoModelForSpeechSeq2Seq.from_pretrained(
model_id, torch_dtype=torch_dtype
)
processor = AutoProcessor.from_pretrained(model_id)
model_or_pipeline = pipeline(
"automatic-speech-recognition",
model=model,
tokenizer=processor.tokenizer,
feature_extractor=processor.feature_extractor,
chunk_length_s=30,
batch_size=batch_size,
return_timestamps=True,
device=device,
)
else:
raise ValueError("Invalid pipeline type")
loaded_models[model_key] = model_or_pipeline # Cache the model or pipeline
start_time_perf = time.time()
if pipeline_type == "faster-batched":
segments, info = model_or_pipeline.transcribe(audio_path, batch_size=batch_size)
elif pipeline_type == "faster-sequenced":
segments, info = model_or_pipeline.transcribe(audio_path)
else:
result = model_or_pipeline(audio_path)
segments = result["chunks"]
end_time_perf = time.time()
transcription_time = end_time_perf - start_time_perf
audio_file_size = os.path.getsize(audio_path) / (1024 * 1024)
metrics_output = (
f"Transcription time: {transcription_time:.2f} seconds\n"
f"Audio file size: {audio_file_size:.2f} MB\n"
)
if verbose:
yield verbose_messages + metrics_output, "", None
transcription = ""
for segment in segments:
if pipeline_type in ["faster-batched", "faster-sequenced"]:
transcription_segment = f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"
else:
transcription_segment = f"[{segment['timestamp'][0]:.2f}s -> {segment['timestamp'][1]:.2f}s] {segment['text']}\n"
transcription += transcription_segment
if verbose:
yield verbose_messages + metrics_output, transcription, None
transcription_file = save_transcription(transcription)
yield verbose_messages + metrics_output, transcription, transcription_file
except Exception as e:
logging.error(f"An error occurred during transcription: {str(e)}")
yield f"An error occurred: {str(e)}", "", None
finally:
# Clean up temporary audio files
if audio_path and is_temp_file and os.path.exists(audio_path):
os.remove(audio_path)
with gr.Blocks() as iface:
gr.Markdown("# Multi-Pipeline Transcription")
gr.Markdown("Transcribe audio using multiple pipelines and models.")
with gr.Row():
#input_source = gr.File(label="Audio Source (Upload a file or enter a URL/YouTube URL)")
input_source = gr.Textbox(label="Audio Source (Upload a file or enter a URL/YouTube URL)")
pipeline_type = gr.Dropdown(
choices=["faster-batched", "faster-sequenced", "transformers"],
label="Pipeline Type",
value="faster-batched"
)
model_id = gr.Dropdown(
label="Model",
choices=get_model_options("faster-batched"),
value=get_model_options("faster-batched")[0]
)
with gr.Row():
dtype = gr.Dropdown(choices=["int8", "float16", "float32"], label="Data Type", value="int8")
batch_size = gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size")
download_method = gr.Dropdown(
choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"],
label="Download Method",
value="yt-dlp"
)
with gr.Row():
start_time = gr.Number(label="Start Time (seconds)", value=None, minimum=0)
end_time = gr.Number(label="End Time (seconds)", value=None, minimum=0)
verbose = gr.Checkbox(label="Verbose Output", value=True) # Set to True by default
transcribe_button = gr.Button("Transcribe")
with gr.Row():
metrics_output = gr.Textbox(label="Transcription Metrics and Verbose Messages", lines=10)
transcription_output = gr.Textbox(label="Transcription", lines=10)
transcription_file = gr.File(label="Download Transcription")
def update_model_dropdown(pipeline_type):
"""
Updates the model dropdown choices based on the selected pipeline type.
Args:
pipeline_type (str): The selected pipeline type.
Returns:
gr.update: Updated model dropdown component.
"""
try:
model_choices = get_model_options(pipeline_type)
logging.info(f"Model choices for {pipeline_type}: {model_choices}")
if model_choices:
return gr.update(choices=model_choices, value=model_choices[0], visible=True)
else:
return gr.update(choices=["No models available"], value=None, visible=False)
except Exception as e:
logging.error(f"Error in update_model_dropdown: {str(e)}")
return gr.update(choices=["Error"], value="Error", visible=True)
# event handler for pipeline_type change
pipeline_type.change(update_model_dropdown, inputs=[pipeline_type], outputs=[model_id])
def transcribe_with_progress(*args):
for result in transcribe_audio(*args):
yield result
transcribe_button.click(
transcribe_with_progress,
inputs=[input_source, pipeline_type, model_id, dtype, batch_size, download_method, start_time, end_time, verbose],
outputs=[metrics_output, transcription_output, transcription_file]
)
gr.Examples(
examples=[
["https://www.youtube.com/watch?v=daQ_hqA6HDo", "faster-batched", "cstr/whisper-large-v3-turbo-int8_float32", "int8", 16, "yt-dlp", None, None, True],
["https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453_-_The_Price_is_Right_-_Law_and_Economics_in_the_Second_Scholastic5yxzh.mp3", "faster-sequenced", "deepdml/faster-whisper-large-v3-turbo-ct2", "float16", 1, "ffmpeg", 0, 300, True],
["path/to/local/audio.mp3", "transformers", "openai/whisper-large-v3", "float16", 16, "yt-dlp", 60, 180, True]
],
inputs=[input_source, pipeline_type, model_id, dtype, batch_size, download_method, start_time, end_time, verbose],
)
iface.launch() |