File size: 24,825 Bytes
0bb0d8e
 
 
87f3409
d990dd0
da9138c
7ac4ac2
da9138c
 
64259e4
acd8816
 
 
 
0bb0d8e
a3dba94
 
 
 
 
 
 
 
 
acd8816
16bc3e4
a8b126b
 
 
 
 
26eb097
a8b126b
 
16bc3e4
a8b126b
 
 
16bc3e4
acd8816
16bc3e4
d274746
516bec5
 
 
 
 
 
 
 
 
 
da9138c
57968e0
4b50bd3
516bec5
 
4b50bd3
5f48e16
 
 
4b50bd3
516bec5
4b50bd3
 
 
516bec5
4b50bd3
 
516bec5
5f48e16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4b50bd3
d274746
516bec5
 
 
 
 
89cebe2
516bec5
 
 
 
d274746
89cebe2
d274746
 
516bec5
 
 
89cebe2
d274746
57968e0
d274746
 
acd8816
 
a96aeb1
 
57968e0
4b50bd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a96aeb1
5f48e16
89cebe2
5f48e16
89cebe2
 
5f48e16
89cebe2
 
 
 
5f48e16
 
 
 
 
 
 
 
 
 
 
 
 
89cebe2
 
5f48e16
 
 
89cebe2
5f48e16
89cebe2
 
a96aeb1
89cebe2
 
 
 
 
 
 
 
 
57968e0
89cebe2
 
 
 
 
 
 
 
 
 
 
 
 
a96aeb1
d274746
57968e0
d274746
 
 
 
 
 
 
 
 
 
 
57968e0
d274746
 
a96aeb1
57968e0
a96aeb1
 
 
64259e4
a96aeb1
 
 
 
 
 
 
 
 
 
64259e4
57968e0
a96aeb1
 
 
57968e0
a96aeb1
 
 
57968e0
a96aeb1
 
64259e4
57968e0
d274746
 
 
57968e0
d274746
 
89cebe2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d274746
516bec5
5f48e16
516bec5
 
 
5f48e16
516bec5
 
 
 
57968e0
89cebe2
 
 
5f48e16
 
 
89cebe2
 
 
 
 
 
 
 
 
 
acd8816
d274746
89cebe2
 
 
 
 
 
 
 
 
57968e0
89cebe2
d274746
89cebe2
 
 
 
 
 
 
d274746
64259e4
516bec5
89cebe2
516bec5
 
 
 
 
 
 
 
 
 
89cebe2
516bec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
89cebe2
 
 
516bec5
 
 
64259e4
acd8816
516bec5
 
 
 
 
 
 
 
 
 
 
 
 
acd8816
d680d0f
516bec5
 
 
 
 
 
 
 
 
d680d0f
516bec5
d680d0f
516bec5
d680d0f
516bec5
57968e0
 
26eb097
4b50bd3
 
d680d0f
516bec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e922c51
4b50bd3
 
 
 
89cebe2
4b50bd3
 
 
 
 
 
e922c51
516bec5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e922c51
516bec5
a8b126b
516bec5
4b50bd3
a96aeb1
4b50bd3
e922c51
 
 
64259e4
516bec5
 
26eb097
d811f00
 
64259e4
4b50bd3
 
 
 
 
 
 
 
516bec5
4b50bd3
516bec5
4b50bd3
89cebe2
 
 
 
 
 
 
 
4b50bd3
89cebe2
4b50bd3
 
516bec5
89cebe2
4b50bd3
 
 
 
 
 
 
 
 
 
516bec5
4b50bd3
1c4f98a
4b50bd3
 
 
 
a8b126b
4b50bd3
a8b126b
1c4f98a
a96aeb1
64259e4
acd8816
 
d274746
 
 
 
 
64259e4
26eb097
d274746
 
 
 
4b50bd3
 
 
 
d274746
acd8816
26eb097
a96aeb1
d274746
26eb097
a96aeb1
 
26eb097
d274746
a96aeb1
 
89cebe2
516bec5
e922c51
ae4be5c
d5bbd76
 
 
 
 
4b50bd3
 
834c15f
 
 
 
 
 
 
 
 
 
d5bbd76
 
 
 
834c15f
 
 
 
 
d5bbd76
 
e922c51
 
a3dba94
d5bbd76
 
 
 
 
 
 
 
ed10fe0
516bec5
 
 
 
 
 
 
 
 
4f55f4b
 
 
 
 
 
 
 
 
 
4b50bd3
 
 
d5bbd76
a3dba94
dbb0e1e
 
a3dba94
d5bbd76
a3dba94
d5bbd76
 
 
 
 
 
4b50bd3
 
 
d5bbd76
 
 
1c4f98a
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
import gradio as gr
import os
import time
import sys
import io
import tempfile
import subprocess
import requests
from urllib.parse import urlparse
from pydub import AudioSegment
import logging
import torch
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
import yt_dlp

class LogCapture(io.StringIO):
    def __init__(self, callback):
        super().__init__()
        self.callback = callback

    def write(self, s):
        super().write(s)
        self.callback(s)
        
logging.basicConfig(level=logging.INFO)

# Clone and install faster-whisper from GitHub
try:
    subprocess.run(["git", "clone", "https://github.com/SYSTRAN/faster-whisper.git"], check=True)
    subprocess.run(["pip", "install", "-e", "./faster-whisper"], check=True)
except subprocess.CalledProcessError as e:
    logging.error(f"Error during faster-whisper installation: {e}")
    sys.exit(1)

sys.path.append("./faster-whisper")

from faster_whisper import WhisperModel
from faster_whisper.transcribe import BatchedInferencePipeline

device = "cuda:0" if torch.cuda.is_available() else "cpu"

def download_audio(url, method_choice):
    """
    Downloads audio from a given URL using the specified method.

    Args:
        url (str): The URL of the audio.
        method_choice (str): The method to use for downloading audio.

    Returns:
        tuple: (path to the downloaded audio file, is_temp_file), or (error message, False).
    """
    parsed_url = urlparse(url)
    logging.info(f"Downloading audio from URL: {url} using method: {method_choice}")
    try:
        if 'youtube.com' in parsed_url.netloc or 'youtu.be' in parsed_url.netloc:
            # Use YouTube download methods
            audio_file = download_youtube_audio(url, method_choice)
        elif parsed_url.scheme == 'rtsp':
            # Use RTSP download methods
            audio_file = download_rtsp_audio(url)
        else:
            # Use direct download methods
            audio_file = download_direct_audio(url, method_choice)
        if not audio_file or not os.path.exists(audio_file):
            raise Exception(f"Failed to download audio from {url}")
        return audio_file, True  # The file is a temporary file
    except Exception as e:
        logging.error(f"Error downloading audio: {str(e)}")
        return f"Error: {str(e)}", False

def download_rtsp_audio(url):
    """
    Downloads audio from an RTSP URL using FFmpeg.

    Args:
        url (str): The RTSP URL.

    Returns:
        str: Path to the downloaded audio file, or None if failed.
    """
    logging.info("Using FFmpeg to download RTSP stream")
    output_file = tempfile.mktemp(suffix='.mp3')
    command = ['ffmpeg', '-i', url, '-acodec', 'libmp3lame', '-ab', '192k', '-y', output_file]
    try:
        subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        logging.info(f"Downloaded RTSP audio to: {output_file}")
        return output_file
    except Exception as e:
        logging.error(f"Error downloading RTSP audio: {str(e)}")
        return None
        
def download_youtube_audio(url, method_choice):
    """
    Downloads audio from a YouTube URL using the specified method.

    Args:
        url (str): The YouTube URL.
        method_choice (str): The method to use for downloading ('yt-dlp', 'pytube').

    Returns:
        str: Path to the downloaded audio file, or None if failed.
    """
    methods = {
        'yt-dlp': yt_dlp_method,
        'pytube': pytube_method,
    }
    method = methods.get(method_choice)
    if method is None:
        logging.warning(f"Invalid download method for YouTube: {method_choice}. Defaulting to 'yt-dlp'.")
        method = yt_dlp_method
    try:
        logging.info(f"Attempting to download YouTube audio using {method_choice}")
        return method(url)
    except Exception as e:
        logging.error(f"Error downloading using {method_choice}: {str(e)}")
        return None

def youtube_dl_method(url):
    logging.info("Using yt-dlp method")
    try:
        ydl_opts = {
            'format': 'bestaudio/best',
            'postprocessors': [{
                'key': 'FFmpegExtractAudio',
                'preferredcodec': 'mp3',
                'preferredquality': '192',
            }],
            'outtmpl': '%(id)s.%(ext)s',
        }
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            info = ydl.extract_info(url, download=True)
            output_file = f"{info['id']}.mp3"
            logging.info(f"Downloaded YouTube audio: {output_file}")
            return output_file
    except Exception as e:
        logging.error(f"Error in youtube_dl_method: {str(e)}")
        return None

def yt_dlp_direct_method(url):
    """
    Downloads audio using yt-dlp (supports various protocols and sites).

    Args:
        url (str): The URL of the audio or webpage containing audio.

    Returns:
        str: Path to the downloaded audio file, or None if failed.
    """
    logging.info("Using yt-dlp direct method")
    output_file = tempfile.mktemp(suffix='.mp3')
    ydl_opts = {
        'format': 'bestaudio/best',
        'outtmpl': output_file,
        'quiet': True,
        'no_warnings': True,
        'postprocessors': [{
            'key': 'FFmpegExtractAudio',
            'preferredcodec': 'mp3',
            'preferredquality': '192',
        }],
    }
    try:
        with yt_dlp.YoutubeDL(ydl_opts) as ydl:
            ydl.download([url])
        logging.info(f"Downloaded audio to: {output_file}")
        return output_file
    except Exception as e:
        logging.error(f"Error in yt_dlp_direct_method: {str(e)}")
        return None
        
def pytube_method(url):
    """
    Downloads audio using pytube.

    Args:
        url (str): The YouTube URL.

    Returns:
        str: Path to the downloaded audio file, or None if failed.
    """
    logging.info("Using pytube method")
    try:
        from pytube import YouTube
        yt = YouTube(url)
        audio_stream = yt.streams.filter(only_audio=True).first()
        out_file = audio_stream.download()
        base, ext = os.path.splitext(out_file)
        new_file = base + '.mp3'
        os.rename(out_file, new_file)
        logging.info(f"Downloaded and converted audio to: {new_file}")
        return new_file
    except Exception as e:
        logging.error(f"Error in pytube_method: {str(e)}")
        return None

def youtube_dl_classic_method(url):
    logging.info("Using youtube-dl classic method")
    ydl_opts = {
        'format': 'bestaudio/best',
        'postprocessors': [{
            'key': 'FFmpegExtractAudio',
            'preferredcodec': 'mp3',
            'preferredquality': '192',
        }],
        'outtmpl': '%(id)s.%(ext)s',
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        info = ydl.extract_info(url, download=True)
        logging.info(f"Downloaded YouTube audio: {info['id']}.mp3")
        return f"{info['id']}.mp3"

def youtube_dl_alternative_method(url):
    logging.info("Using yt-dlp alternative method")
    ydl_opts = {
        'format': 'bestaudio/best',
        'postprocessors': [{
            'key': 'FFmpegExtractAudio', 
            'preferredcodec': 'mp3',
            'preferredquality': '192',
        }],
        'outtmpl': '%(id)s.%(ext)s',
        'no_warnings': True,
        'quiet': True,
        'no_check_certificate': True,
        'prefer_insecure': True,
    }
    with yt_dlp.YoutubeDL(ydl_opts) as ydl:
        info = ydl.extract_info(url, download=True) 
        logging.info(f"Downloaded YouTube audio: {info['id']}.mp3")
        return f"{info['id']}.mp3"

def ffmpeg_method(url):
    logging.info("Using ffmpeg method")
    output_file = tempfile.mktemp(suffix='.mp3')
    command = ['ffmpeg', '-i', url, '-vn', '-acodec', 'libmp3lame', '-q:a', '2', output_file]
    subprocess.run(command, check=True, capture_output=True)
    logging.info(f"Downloaded and converted audio to: {output_file}")
    return output_file

def aria2_method(url):  
    logging.info("Using aria2 method")
    output_file = tempfile.mktemp(suffix='.mp3')
    command = ['aria2c', '--split=4', '--max-connection-per-server=4', '--out', output_file, url]
    subprocess.run(command, check=True, capture_output=True)
    logging.info(f"Downloaded audio to: {output_file}")
    return output_file

def requests_method(url):
    """
    Downloads audio using the requests library.

    Args:
        url (str): The URL of the audio file.

    Returns:
        str: Path to the downloaded audio file, or None if failed.
    """
    try:
        response = requests.get(url, stream=True)
        if response.status_code == 200:
            with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
                for chunk in response.iter_content(chunk_size=8192):
                    if chunk:
                        temp_file.write(chunk)
            logging.info(f"Downloaded direct audio to: {temp_file.name}")
            return temp_file.name
        else:
            logging.error(f"Failed to download audio from {url} with status code {response.status_code}")
            return None
    except Exception as e:
        logging.error(f"Error in requests_method: {str(e)}")
        return None
        
def download_direct_audio(url, method_choice):
    """
    Downloads audio from a direct URL or podcast URL using the specified method.

    Args:
        url (str): The direct URL of the audio file.
        method_choice (str): The method to use for downloading ('wget', 'requests', 'yt-dlp', 'ffmpeg', 'aria2').

    Returns:
        str: Path to the downloaded audio file, or None if failed.
    """
    logging.info(f"Downloading direct audio from: {url} using method: {method_choice}")
    methods = {
        'wget': wget_method,
        'requests': requests_method,
        'yt-dlp': yt_dlp_direct_method,
        'ffmpeg': ffmpeg_method,
        'aria2': aria2_method,
    }
    method = methods.get(method_choice)
    if method is None:
        logging.warning(f"Invalid download method: {method_choice}. Defaulting to 'requests'.")
        method = requests_method
    try:
        return method(url)
    except Exception as e:
        logging.error(f"Error downloading direct audio: {str(e)}")
        return None

def wget_method(url):
    """
    Downloads audio using the wget command-line tool.

    Args:
        url (str): The URL of the audio file.

    Returns:
        str: Path to the downloaded audio file, or None if failed.
    """
    logging.info("Using wget method")
    output_file = tempfile.mktemp(suffix='.mp3')
    command = ['wget', '-O', output_file, url]
    try:
        subprocess.run(command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
        logging.info(f"Downloaded audio to: {output_file}")
        return output_file
    except Exception as e:
        logging.error(f"Error in wget_method: {str(e)}")
        return None

def trim_audio(audio_path, start_time, end_time):
    """
    Trims an audio file to the specified start and end times using pydub.

    Args:
        audio_path (str): Path to the audio file.
        start_time (float): Start time in seconds.
        end_time (float): End time in seconds.

    Returns:
        str: Path to the trimmed audio file.

    Raises:
        gr.Error: If invalid start or end times are provided or if FFmpeg is not found.
    """
    try:
        logging.info(f"Trimming audio from {start_time} to {end_time}")
        audio = AudioSegment.from_file(audio_path)
        audio_duration = len(audio) / 1000  # Duration in seconds

        # Default start and end times if None
        if start_time is None:
            start_time = 0
        if end_time is None or end_time > audio_duration:
            end_time = audio_duration

        # Validate times
        if start_time < 0 or end_time <= 0:
            raise gr.Error("Start time and end time must be positive.")
        if start_time >= end_time:
            raise gr.Error("End time must be greater than start time.")
        if start_time > audio_duration:
            raise gr.Error("Start time exceeds audio duration.")

        trimmed_audio = audio[start_time * 1000:end_time * 1000]
        with tempfile.NamedTemporaryFile(delete=False, suffix='.wav') as temp_audio_file:
            trimmed_audio.export(temp_audio_file.name, format="wav")
            logging.info(f"Trimmed audio saved to: {temp_audio_file.name}")
        return temp_audio_file.name
    except FileNotFoundError as e:
        logging.error(f"FFmpeg not found: {str(e)}")
        raise gr.Error("FFmpeg not found. Please ensure that FFmpeg is installed and in your system PATH.")
    except Exception as e:
        logging.error(f"Error trimming audio: {str(e)}")
        raise gr.Error(f"Error trimming audio: {str(e)}")

def save_transcription(transcription):
    """
    Saves the transcription text to a temporary file.

    Args:
        transcription (str): The transcription text.

    Returns:
        str: The path to the transcription file.
    """
    with tempfile.NamedTemporaryFile(delete=False, suffix='.txt', mode='w', encoding='utf-8') as temp_file:
        temp_file.write(transcription)
        logging.info(f"Transcription saved to: {temp_file.name}")
        return temp_file.name

def get_model_options(pipeline_type):
    """
    Returns a list of model IDs based on the selected pipeline type.

    Args:
        pipeline_type (str): The type of pipeline ('faster-batched', 'faster-sequenced', 'transformers').

    Returns:
        list: A list of model IDs.
    """
    if pipeline_type == "faster-batched":
        return ["cstr/whisper-large-v3-turbo-int8_float32", "SYSTRAN/faster-whisper-large-v1", "GalaktischeGurke/primeline-whisper-large-v3-german-ct2"]
    elif pipeline_type == "faster-sequenced":
        return ["SYSTRAN/faster-whisper-large-v1", "GalaktischeGurke/primeline-whisper-large-v3-german-ct2"]
    elif pipeline_type == "transformers":
        return ["openai/whisper-large-v3", "openai/whisper-large-v2"]
    else:
        return []

loaded_models = {}

def transcribe_audio(input_source, pipeline_type, model_id, dtype, batch_size, download_method, start_time=None, end_time=None, verbose=False):
    """
    Transcribes audio from a given source using the specified pipeline and model.

    Args:
        input_source (str or file): URL of audio, path to local file, or uploaded file object.
        pipeline_type (str): Type of pipeline to use ('faster-batched', 'faster-sequenced', or 'transformers').
        model_id (str): The ID of the model to use.
        dtype (str): Data type for model computations ('int8', 'float16', or 'float32').
        batch_size (int): Batch size for transcription.
        download_method (str): Method to use for downloading audio.
        start_time (float, optional): Start time in seconds for trimming audio.
        end_time (float, optional): End time in seconds for trimming audio.
        verbose (bool, optional): Whether to output verbose logging.

    Yields:
        Tuple[str, str, str or None]: Metrics and messages, transcription text, path to transcription file.
    """
    try:
        if verbose:
            logging.getLogger().setLevel(logging.INFO)
        else:
            logging.getLogger().setLevel(logging.WARNING)

        logging.info(f"Transcription parameters: pipeline_type={pipeline_type}, model_id={model_id}, dtype={dtype}, batch_size={batch_size}, download_method={download_method}")
        verbose_messages = f"Starting transcription with parameters:\nPipeline Type: {pipeline_type}\nModel ID: {model_id}\nData Type: {dtype}\nBatch Size: {batch_size}\nDownload Method: {download_method}\n"

        if verbose:
            yield verbose_messages, "", None

        # Determine if input_source is a URL or file
        audio_path = None
        is_temp_file = False

        if isinstance(input_source, str) and (input_source.startswith('http://') or input_source.startswith('https://')):
            # Input source is a URL
            audio_path, is_temp_file = download_audio(input_source, download_method)
            if not audio_path or audio_path.startswith("Error"):
                yield f"Error downloading audio: {audio_path}", "", None
                return
        elif isinstance(input_source, str) and os.path.exists(input_source):
            # Input source is a local file path
            audio_path = input_source
            is_temp_file = False
        elif hasattr(input_source, 'name'):
            # Input source is an uploaded file object
            audio_path = input_source.name
            is_temp_file = False
        else:
            yield "No valid audio source provided.", "", None
            return

        # Convert start_time and end_time to float or None
        start_time = float(start_time) if start_time else None
        end_time = float(end_time) if end_time else None

        if start_time is not None or end_time is not None:
            audio_path = trim_audio(audio_path, start_time, end_time)
            is_temp_file = True  # The trimmed audio is a temporary file
            verbose_messages += f"Audio trimmed from {start_time} to {end_time}\n"
            if verbose:
                yield verbose_messages, "", None

        # Model caching
        model_key = (pipeline_type, model_id, dtype)
        if model_key in loaded_models:
            model_or_pipeline = loaded_models[model_key]
            logging.info("Loaded model from cache")
        else:
            if pipeline_type == "faster-batched":
                model = WhisperModel(model_id, device=device, compute_type=dtype)
                model_or_pipeline = BatchedInferencePipeline(model=model)
            elif pipeline_type == "faster-sequenced":
                model_or_pipeline = WhisperModel(model_id, device=device, compute_type=dtype)
            elif pipeline_type == "transformers":
                # Adjust torch_dtype based on dtype and device
                if dtype == "float16" and device == "cpu":
                    torch_dtype = torch.float32
                elif dtype == "float16":
                    torch_dtype = torch.float16
                else:
                    torch_dtype = torch.float32

                model = AutoModelForSpeechSeq2Seq.from_pretrained(
                    model_id, torch_dtype=torch_dtype
                )
                processor = AutoProcessor.from_pretrained(model_id)
                model_or_pipeline = pipeline(
                    "automatic-speech-recognition",
                    model=model,
                    tokenizer=processor.tokenizer,
                    feature_extractor=processor.feature_extractor,
                    chunk_length_s=30,
                    batch_size=batch_size,
                    return_timestamps=True,
                    device=device,
                )
            else:
                raise ValueError("Invalid pipeline type")
            loaded_models[model_key] = model_or_pipeline  # Cache the model or pipeline

        start_time_perf = time.time()
        if pipeline_type == "faster-batched":
            segments, info = model_or_pipeline.transcribe(audio_path, batch_size=batch_size)
        elif pipeline_type == "faster-sequenced":
            segments, info = model_or_pipeline.transcribe(audio_path)
        else:
            result = model_or_pipeline(audio_path)
            segments = result["chunks"]
        end_time_perf = time.time()

        transcription_time = end_time_perf - start_time_perf
        audio_file_size = os.path.getsize(audio_path) / (1024 * 1024)

        metrics_output = (
            f"Transcription time: {transcription_time:.2f} seconds\n"
            f"Audio file size: {audio_file_size:.2f} MB\n"
        )

        if verbose:
            yield verbose_messages + metrics_output, "", None

        transcription = ""

        for segment in segments:
            if pipeline_type in ["faster-batched", "faster-sequenced"]:
                transcription_segment = f"[{segment.start:.2f}s -> {segment.end:.2f}s] {segment.text}\n"
            else:
                transcription_segment = f"[{segment['timestamp'][0]:.2f}s -> {segment['timestamp'][1]:.2f}s] {segment['text']}\n"
            transcription += transcription_segment
            if verbose:
                yield verbose_messages + metrics_output, transcription, None

        transcription_file = save_transcription(transcription)
        yield verbose_messages + metrics_output, transcription, transcription_file

    except Exception as e:
        logging.error(f"An error occurred during transcription: {str(e)}")
        yield f"An error occurred: {str(e)}", "", None

    finally:
        # Clean up temporary audio files
        if audio_path and is_temp_file and os.path.exists(audio_path):
            os.remove(audio_path)

with gr.Blocks() as iface:
    gr.Markdown("# Multi-Pipeline Transcription")
    gr.Markdown("Transcribe audio using multiple pipelines and models.")
    
    with gr.Row():
        #input_source = gr.File(label="Audio Source (Upload a file or enter a URL/YouTube URL)")
        input_source = gr.Textbox(label="Audio Source (Upload a file or enter a URL/YouTube URL)")
        pipeline_type = gr.Dropdown(
            choices=["faster-batched", "faster-sequenced", "transformers"],
            label="Pipeline Type",
            value="faster-batched"
        )
        model_id = gr.Dropdown(
            label="Model",
            choices=get_model_options("faster-batched"),
            value=get_model_options("faster-batched")[0]
        )
    
    with gr.Row():
        dtype = gr.Dropdown(choices=["int8", "float16", "float32"], label="Data Type", value="int8")
        batch_size = gr.Slider(minimum=1, maximum=32, step=1, value=16, label="Batch Size")
        download_method = gr.Dropdown(
            choices=["yt-dlp", "pytube", "youtube-dl", "yt-dlp-alt", "ffmpeg", "aria2", "wget"],
            label="Download Method",
            value="yt-dlp"
        )
    
    with gr.Row():
        start_time = gr.Number(label="Start Time (seconds)", value=None, minimum=0)
        end_time = gr.Number(label="End Time (seconds)", value=None, minimum=0)
        verbose = gr.Checkbox(label="Verbose Output", value=True)  # Set to True by default
    
    transcribe_button = gr.Button("Transcribe")
    
    with gr.Row():
        metrics_output = gr.Textbox(label="Transcription Metrics and Verbose Messages", lines=10)
        transcription_output = gr.Textbox(label="Transcription", lines=10)
        transcription_file = gr.File(label="Download Transcription")
    
    def update_model_dropdown(pipeline_type):
        """
        Updates the model dropdown choices based on the selected pipeline type.
    
        Args:
            pipeline_type (str): The selected pipeline type.
    
        Returns:
            gr.update: Updated model dropdown component.
        """
        try:
            model_choices = get_model_options(pipeline_type)
            logging.info(f"Model choices for {pipeline_type}: {model_choices}")
            if model_choices:
                return gr.update(choices=model_choices, value=model_choices[0], visible=True)
            else:
                return gr.update(choices=["No models available"], value=None, visible=False)
        except Exception as e:
            logging.error(f"Error in update_model_dropdown: {str(e)}")
            return gr.update(choices=["Error"], value="Error", visible=True)

    # event handler for pipeline_type change
    pipeline_type.change(update_model_dropdown, inputs=[pipeline_type], outputs=[model_id])
    
    def transcribe_with_progress(*args):
        for result in transcribe_audio(*args):
            yield result
    
    transcribe_button.click(
        transcribe_with_progress,
        inputs=[input_source, pipeline_type, model_id, dtype, batch_size, download_method, start_time, end_time, verbose],
        outputs=[metrics_output, transcription_output, transcription_file]
    )
    
    gr.Examples(
        examples=[
            ["https://www.youtube.com/watch?v=daQ_hqA6HDo", "faster-batched", "cstr/whisper-large-v3-turbo-int8_float32", "int8", 16, "yt-dlp", None, None, True],
            ["https://mcdn.podbean.com/mf/web/dir5wty678b6g4vg/HoP_453_-_The_Price_is_Right_-_Law_and_Economics_in_the_Second_Scholastic5yxzh.mp3", "faster-sequenced", "deepdml/faster-whisper-large-v3-turbo-ct2", "float16", 1, "ffmpeg", 0, 300, True],
            ["path/to/local/audio.mp3", "transformers", "openai/whisper-large-v3", "float16", 16, "yt-dlp", 60, 180, True]
        ],
        inputs=[input_source, pipeline_type, model_id, dtype, batch_size, download_method, start_time, end_time, verbose],
    )

iface.launch()