Spaces:
Running
Running
import os | |
import re | |
import tempfile | |
import requests | |
import gradio as gr | |
from PyPDF2 import PdfReader | |
import logging | |
import webbrowser | |
from gradio_client import Client | |
# Set up logging | |
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') | |
# Initialize Hugging Face models | |
HUGGINGFACE_MODELS = { | |
"Phi-3 Mini 128k": "eswardivi/Phi-3-mini-128k-instruct", | |
} | |
# Common context window sizes | |
CONTEXT_SIZES = { | |
"4K": 4000, | |
"8K": 8000, | |
"32K": 32000, | |
"128K": 128000, | |
"200K": 200000 | |
} | |
def copy_to_clipboard(text): | |
return text | |
def open_chatgpt(): | |
webbrowser.open('https://chat.openai.com/') | |
return "Opening ChatGPT in browser..." | |
# Utility Functions | |
def extract_text_from_pdf(pdf_path): | |
"""Extract text content from PDF file.""" | |
try: | |
reader = PdfReader(pdf_path) | |
text = "" | |
for page_num, page in enumerate(reader.pages, start=1): | |
page_text = page.extract_text() | |
if page_text: | |
text += page_text + "\n" | |
else: | |
logging.warning(f"No text found on page {page_num}.") | |
if not text.strip(): | |
return "Error: No extractable text found in the PDF." | |
return text | |
except Exception as e: | |
logging.error(f"Error reading PDF file: {e}") | |
return f"Error reading PDF file: {e}" | |
def format_content(text, format_type): | |
"""Format extracted text according to specified format.""" | |
if format_type == 'txt': | |
return text | |
elif format_type == 'md': | |
paragraphs = text.split('\n\n') | |
return '\n\n'.join(paragraphs) | |
elif format_type == 'html': | |
paragraphs = text.split('\n\n') | |
return ''.join([f'<p>{para.strip()}</p>' for para in paragraphs if para.strip()]) | |
else: | |
logging.error(f"Unsupported format: {format_type}") | |
return f"Unsupported format: {format_type}" | |
def split_into_snippets(text, context_size): | |
"""Split text into manageable snippets based on context size.""" | |
sentences = re.split(r'(?<=[.!?]) +', text) | |
snippets = [] | |
current_snippet = "" | |
for sentence in sentences: | |
if len(current_snippet) + len(sentence) + 1 > context_size: | |
if current_snippet: | |
snippets.append(current_snippet.strip()) | |
current_snippet = sentence + " " | |
else: | |
snippets.append(sentence.strip()) | |
current_snippet = "" | |
else: | |
current_snippet += sentence + " " | |
if current_snippet.strip(): | |
snippets.append(current_snippet.strip()) | |
return snippets | |
def build_prompts(snippets, prompt_instruction, custom_prompt, snippet_num=None): | |
"""Build formatted prompts from text snippets.""" | |
if snippet_num is not None: | |
if 1 <= snippet_num <= len(snippets): | |
selected_snippets = [snippets[snippet_num - 1]] | |
else: | |
return f"Error: Invalid snippet number. Please choose between 1 and {len(snippets)}." | |
else: | |
selected_snippets = snippets | |
prompts = [] | |
base_prompt = custom_prompt if custom_prompt else prompt_instruction | |
for idx, snippet in enumerate(selected_snippets, start=1): | |
if len(selected_snippets) > 1: | |
prompt_header = f"{base_prompt} Part {idx} of {len(selected_snippets)}: ---\n" | |
else: | |
prompt_header = f"{base_prompt} ---\n" | |
framed_prompt = f"{prompt_header}{snippet}\n---" | |
prompts.append(framed_prompt) | |
return "\n\n".join(prompts) | |
def send_to_huggingface(prompt, model_name): | |
"""Send prompt to Hugging Face model using gradio_client.""" | |
try: | |
client = Client(model_name) | |
response = client.predict( | |
prompt, # message | |
0.9, # temperature | |
True, # sampling | |
512, # max_new_tokens | |
api_name="/chat" | |
) | |
return response | |
except Exception as e: | |
logging.error(f"Error interacting with Hugging Face model: {e}") | |
return f"Error interacting with Hugging Face model: {e}" | |
# Main Interface | |
with gr.Blocks(theme=gr.themes.Default()) as demo: | |
# Header | |
gr.Markdown("# π Smart PDF Summarizer") | |
gr.Markdown("Upload a PDF document and get AI-powered summaries using OpenAI or Hugging Face models.") | |
# Main Content | |
with gr.Row(): | |
# Left Column - Input Options | |
with gr.Column(scale=1): | |
pdf_input = gr.File( | |
label="π Upload PDF", | |
file_types=[".pdf"] | |
) | |
with gr.Row(): | |
format_type = gr.Radio( | |
choices=["txt", "md", "html"], | |
value="txt", | |
label="π Output Format" | |
) | |
gr.Markdown("### Context Window Size") | |
with gr.Row(): | |
for size_name, size_value in CONTEXT_SIZES.items(): | |
if gr.Button(size_name).click: | |
context_size.value = size_value | |
context_size = gr.Slider( | |
minimum=1000, | |
maximum=200000, | |
step=1000, | |
value=32000, | |
label="π Custom Context Size" | |
) | |
snippet_number = gr.Number( | |
label="π’ Snippet Number", | |
value=1, | |
precision=0 | |
) | |
custom_prompt = gr.Textbox( | |
label="βοΈ Custom Prompt", | |
placeholder="Enter your custom prompt here...", | |
lines=2 | |
) | |
model_choice = gr.Radio( | |
choices=["OpenAI ChatGPT", "Hugging Face Model"], | |
value="OpenAI ChatGPT", | |
label="π€ Model Selection" | |
) | |
hf_model = gr.Dropdown( | |
choices=list(HUGGINGFACE_MODELS.keys()), | |
label="π§ Hugging Face Model", | |
visible=False | |
) | |
# Authentication moved down | |
with gr.Row(visible=False) as auth_row: | |
openai_api_key = gr.Textbox( | |
label="π OpenAI API Key", | |
type="password", | |
placeholder="Enter your OpenAI API key (optional)" | |
) | |
# Right Column - Output | |
with gr.Column(scale=1): | |
with gr.Row(): | |
process_button = gr.Button("π Process PDF", variant="primary") | |
progress_status = gr.Textbox( | |
label="π Progress", | |
interactive=False | |
) | |
generated_prompt = gr.Textbox( | |
label="π Generated Prompt", | |
lines=10 | |
) | |
with gr.Row(): | |
copy_prompt_button = gr.Button("π Copy Prompt") | |
open_chatgpt_button = gr.Button("π Open ChatGPT") | |
summary_output = gr.Textbox( | |
label="π Summary", | |
lines=15 | |
) | |
with gr.Row(): | |
copy_summary_button = gr.Button("π Copy Summary") | |
download_files = gr.Files( | |
label="π₯ Download Files" | |
) | |
# Event Handlers | |
def toggle_hf_model(choice): | |
return gr.update(visible=choice == "Hugging Face Model"), gr.update(visible=choice == "OpenAI ChatGPT") | |
def process_pdf(pdf, fmt, ctx_size, snippet_num, prompt, model_selection, hf_model_choice): | |
try: | |
if not pdf: | |
return "Please upload a PDF file.", "", "", None | |
# Extract text | |
text = extract_text_from_pdf(pdf.name) | |
if text.startswith("Error"): | |
return text, "", "", None | |
# Format content | |
formatted_text = format_content(text, fmt) | |
# Split into snippets | |
snippets = split_into_snippets(formatted_text, ctx_size) | |
# Build prompts | |
default_prompt = "Summarize the following text:" | |
full_prompt = build_prompts(snippets, default_prompt, prompt, snippet_num) | |
if isinstance(full_prompt, str) and full_prompt.startswith("Error"): | |
return full_prompt, "", "", None | |
# Generate summary based on model choice | |
if model_selection == "Hugging Face Model": | |
summary = send_to_huggingface(full_prompt, HUGGINGFACE_MODELS[hf_model_choice]) | |
else: | |
summary = "Please use the Copy Prompt button and paste into ChatGPT." | |
# Save files for download | |
files_to_download = [] | |
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file: | |
prompt_file.write(full_prompt) | |
files_to_download.append(prompt_file.name) | |
if summary != "Please use the Copy Prompt button and paste into ChatGPT.": | |
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file: | |
summary_file.write(summary) | |
files_to_download.append(summary_file.name) | |
return "Processing complete!", full_prompt, summary, files_to_download | |
except Exception as e: | |
logging.error(f"Error processing PDF: {e}") | |
return f"Error processing PDF: {str(e)}", "", "", None | |
# Connect event handlers | |
model_choice.change( | |
toggle_hf_model, | |
inputs=[model_choice], | |
outputs=[hf_model, auth_row] | |
) | |
process_button.click( | |
process_pdf, | |
inputs=[ | |
pdf_input, | |
format_type, | |
context_size, | |
snippet_number, | |
custom_prompt, | |
model_choice, | |
hf_model | |
], | |
outputs=[ | |
progress_status, | |
generated_prompt, | |
summary_output, | |
download_files | |
] | |
) | |
copy_prompt_button.click( | |
copy_to_clipboard, | |
inputs=[generated_prompt], | |
outputs=[progress_status] | |
) | |
copy_summary_button.click( | |
copy_to_clipboard, | |
inputs=[summary_output], | |
outputs=[progress_status] | |
) | |
open_chatgpt_button.click( | |
open_chatgpt, | |
outputs=[progress_status] | |
) | |
# Instructions | |
gr.Markdown(""" | |
### π Instructions: | |
1. Upload a PDF document | |
2. Choose output format and context window size | |
3. Select snippet number (default: 1) or enter custom prompt | |
4. Select between OpenAI ChatGPT or Hugging Face model | |
5. Click 'Process PDF' to generate summary | |
6. Use 'Copy Prompt' and 'Open ChatGPT' for manual processing | |
7. Download generated files as needed | |
### βοΈ Features: | |
- Support for multiple PDF formats | |
- Flexible text formatting options | |
- Predefined context window sizes (4K to 200K) | |
- Copy to clipboard functionality | |
- Direct ChatGPT integration | |
- Downloadable outputs | |
""") | |
# Launch the interface | |
if __name__ == "__main__": | |
demo.launch(share=False, debug=True) |