Spaces:
Running
Running
File size: 30,277 Bytes
9d8df86 38b3cc5 9d8df86 ff1b4d3 897fb70 38b3cc5 9d8df86 897fb70 ff1b4d3 d89b36d 897fb70 ff1b4d3 897fb70 cb22f6c 897fb70 cb22f6c 897fb70 cb22f6c 897fb70 cb22f6c 897fb70 ff1b4d3 897fb70 9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 897fb70 9d8df86 897fb70 9d8df86 897fb70 9d8df86 ff1b4d3 9d8df86 ff1b4d3 9d8df86 ff1b4d3 9d8df86 d89b36d cb22f6c d89b36d cb22f6c d89b36d cb22f6c 897fb70 9d8df86 d89b36d 897fb70 d89b36d 38b3cc5 d89b36d 897fb70 d89b36d 897fb70 d89b36d 897fb70 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d cb22f6c d89b36d cb22f6c d89b36d 897fb70 d89b36d 897fb70 d89b36d 897fb70 d89b36d 897fb70 d89b36d 897fb70 d89b36d 897fb70 cb22f6c 897fb70 d89b36d 897fb70 9d8df86 d89b36d 9d8df86 38b3cc5 d89b36d 897fb70 9d8df86 897fb70 38b3cc5 d89b36d ff1b4d3 d89b36d cb22f6c d89b36d 9d8df86 d89b36d cb22f6c d89b36d ff1b4d3 d89b36d 9d8df86 d89b36d 9d8df86 d89b36d 9d8df86 897fb70 cb22f6c 897fb70 bfc0f42 897fb70 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d 1281edc d89b36d 8b246e4 d89b36d 8b246e4 d89b36d 9d8df86 d89b36d 9d8df86 d89b36d 9d8df86 8b246e4 9d8df86 897fb70 d89b36d 897fb70 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d 8b246e4 d89b36d cb22f6c d89b36d cb22f6c 9d8df86 897fb70 cb22f6c 9d8df86 ff1b4d3 9d8df86 897fb70 d89b36d ff1b4d3 9d8df86 ff1b4d3 cb22f6c 897fb70 ff1b4d3 cb22f6c ff1b4d3 9d8df86 38b3cc5 9d8df86 38b3cc5 9d8df86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 |
import os
import re
import tempfile
import requests
import gradio as gr
from PyPDF2 import PdfReader
import logging
import webbrowser
from huggingface_hub import InferenceClient
from typing import Dict, List, Optional, Tuple
import time
# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Constants
CONTEXT_SIZES = {
"4K": 4000,
"8K": 8000,
"32K": 32000,
"128K": 128000,
"200K": 200000
}
MODEL_CONTEXT_SIZES = {
"OpenAI ChatGPT": 4096,
"HuggingFace Inference": 4096,
"Groq API": {
"llama-3.1-70b-versatile": 32768,
"mixtral-8x7b-32768": 32768,
"llama-3.1-8b-instant": 8192
}
}
class ModelRegistry:
def __init__(self):
self.hf_models = {
"Phi-3 Mini 128k": "microsoft/Phi-3-mini-128k-instruct",
"Custom Model": ""
}
self.groq_models = self._fetch_groq_models()
def _fetch_groq_models(self) -> Dict[str, str]:
"""Fetch available Groq models with proper error handling"""
try:
groq_api_key = os.getenv('GROQ_API_KEY')
if not groq_api_key:
logging.warning("No GROQ_API_KEY found in environment")
return self._get_default_groq_models()
headers = {
"Authorization": f"Bearer {groq_api_key}",
"Content-Type": "application/json"
}
response = requests.get("https://api.groq.com/openai/v1/models", headers=headers)
if response.status_code == 200:
models = response.json().get("data", [])
return {model["id"]: model["id"] for model in models}
else:
logging.error(f"Failed to fetch Groq models: {response.status_code}")
return self._get_default_groq_models()
except Exception as e:
logging.error(f"Error fetching Groq models: {e}")
return self._get_default_groq_models()
def _get_default_groq_models(self) -> Dict[str, str]:
"""Return default Groq models when API is unavailable"""
return {
"llama-3.1-70b-versatile": "llama-3.1-70b-versatile",
"mixtral-8x7b-32768": "mixtral-8x7b-32768",
"llama-3.1-8b-instant": "llama-3.1-8b-instant"
}
def refresh_groq_models(self) -> Dict[str, str]:
"""Refresh the list of available Groq models"""
self.groq_models = self._fetch_groq_models()
return self.groq_models
# Initialize model registry
model_registry = ModelRegistry()
def extract_text_from_pdf(pdf_path: str) -> str:
"""Extract text content from PDF file."""
try:
reader = PdfReader(pdf_path)
text = ""
for page_num, page in enumerate(reader.pages, start=1):
page_text = page.extract_text()
if page_text:
text += page_text + "\n"
else:
logging.warning(f"No text found on page {page_num}.")
if not text.strip():
return "Error: No extractable text found in the PDF."
return text
except Exception as e:
logging.error(f"Error reading PDF file: {e}")
return f"Error reading PDF file: {e}"
def format_content(text: str, format_type: str) -> str:
"""Format extracted text according to specified format."""
if format_type == 'txt':
return text
elif format_type == 'md':
paragraphs = text.split('\n\n')
return '\n\n'.join(paragraphs)
elif format_type == 'html':
paragraphs = text.split('\n\n')
return ''.join([f'<p>{para.strip()}</p>' for para in paragraphs if para.strip()])
else:
logging.error(f"Unsupported format: {format_type}")
return f"Unsupported format: {format_type}"
def split_into_snippets(text: str, context_size: int) -> List[str]:
"""Split text into manageable snippets based on context size."""
sentences = re.split(r'(?<=[.!?]) +', text)
snippets = []
current_snippet = ""
for sentence in sentences:
if len(current_snippet) + len(sentence) + 1 > context_size:
if current_snippet:
snippets.append(current_snippet.strip())
current_snippet = sentence + " "
else:
snippets.append(sentence.strip())
current_snippet = ""
else:
current_snippet += sentence + " "
if current_snippet.strip():
snippets.append(current_snippet.strip())
return snippets
def build_prompts(snippets: List[str], prompt_instruction: str, custom_prompt: Optional[str], snippet_num: Optional[int] = None) -> str:
"""Build formatted prompts from text snippets."""
if snippet_num is not None:
if 1 <= snippet_num <= len(snippets):
selected_snippets = [snippets[snippet_num - 1]]
else:
return f"Error: Invalid snippet number. Please choose between 1 and {len(snippets)}."
else:
selected_snippets = snippets
prompts = []
base_prompt = custom_prompt if custom_prompt else prompt_instruction
for idx, snippet in enumerate(selected_snippets, start=1):
if len(selected_snippets) > 1:
prompt_header = f"{base_prompt} Part {idx} of {len(selected_snippets)}: ---\n"
else:
prompt_header = f"{base_prompt} ---\n"
framed_prompt = f"{prompt_header}{snippet}\n---"
prompts.append(framed_prompt)
return "\n\n".join(prompts)
def send_to_model(*args, **kwargs):
try:
with gr.Progress() as progress:
progress(0, "Preparing to send to model...")
result = send_to_model_impl(*args, **kwargs)
progress(1, "Complete!")
return result
except Exception as e:
return f"Error: {str(e)}", None
def send_to_model_impl(prompt, model_selection, hf_model_choice, hf_custom_model, hf_api_key,
groq_model_choice, groq_api_key, openai_api_key):
"""Implementation of send to model functionality"""
if model_selection == "HuggingFace Inference":
if not hf_api_key:
return "HuggingFace API key required.", []
model_id = hf_custom_model if hf_model_choice == "Custom Model" else model_registry.hf_models[hf_model_choice]
summary = send_to_hf_inference(prompt, model_id, hf_api_key)
elif model_selection == "Groq API":
if not groq_api_key:
return "Groq API key required.", []
summary = send_to_groq(prompt, groq_model_choice, groq_api_key)
elif model_selection == "OpenAI ChatGPT":
if not openai_api_key:
return "OpenAI API key required.", []
summary = send_to_openai(prompt, openai_api_key)
else:
return "Invalid model selection.", []
if summary.startswith("Error"):
return summary, []
# Save summary for download
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f:
f.write(summary)
return summary, [f.name]
def send_to_hf_inference(prompt: str, model_name: str, api_key: str) -> str:
"""Send prompt to HuggingFace using Inference API"""
try:
client = InferenceClient(token=api_key)
response = client.text_generation(
prompt,
model=model_name,
max_new_tokens=500,
temperature=0.7,
details=True, # Get full response details
stream=False # Don't stream output
)
return response.generated_text # Return just the generated text
except Exception as e:
logging.error(f"Error with HF inference: {e}")
return f"Error with HF inference: {e}"
def send_to_groq(prompt: str, model_name: str, api_key: str) -> str:
"""Send prompt to Groq API"""
try:
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json"
}
data = {
"model": model_name,
"messages": [{"role": "user", "content": prompt}],
"temperature": 0.7,
"max_tokens": 500
}
response = requests.post(
"https://api.groq.com/openai/v1/chat/completions",
headers=headers,
json=data
)
if response.status_code != 200:
return f"Error: Groq API returned status {response.status_code}"
response_json = response.json()
if "choices" not in response_json or not response_json["choices"]:
return "Error: No response from Groq API"
return response_json["choices"][0]["message"]["content"]
except Exception as e:
logging.error(f"Error with Groq API: {e}")
return f"Error with Groq API: {e}"
def send_to_openai(prompt: str, api_key: str) -> str:
"""Send prompt to OpenAI API"""
try:
import openai
openai.api_key = api_key
response = openai.ChatCompletion.create(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": prompt}],
temperature=0.7,
max_tokens=500
)
return response.choices[0].message.content
except Exception as e:
logging.error(f"Error with OpenAI API: {e}")
return f"Error with OpenAI API: {e}"
def copy_text_js(element_id: str) -> str:
return f"""
() => {{
try {{
const elem = document.querySelector('#{element_id} textarea');
if (!elem) throw new Error('Element not found');
const text = elem.value;
if (!text) throw new Error('No text to copy');
navigator.clipboard.writeText(text);
return "Copied to clipboard!";
}} catch (e) {{
console.error(e);
return "Failed to copy: " + e.message;
}}
}}
"""
def open_chatgpt() -> str:
"""Open ChatGPT in new browser tab"""
return """window.open('https://chat.openai.com/', '_blank');"""
def process_pdf(pdf, fmt, ctx_size):
"""Process PDF and return text and snippets"""
try:
if not pdf:
return "Please upload a PDF file.", "", [], None
# Extract text
text = extract_text_from_pdf(pdf.name)
if text.startswith("Error"):
return text, "", [], None
# Format content
formatted_text = format_content(text, fmt)
# Split into snippets
snippets = split_into_snippets(formatted_text, ctx_size)
# Save full text for download
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as text_file:
text_file.write(formatted_text)
snippet_choices = [f"Snippet {i+1} of {len(snippets)}" for i in range(len(snippets))]
return (
"PDF processed successfully!",
formatted_text,
snippets,
snippet_choices,
[text_file.name]
)
except Exception as e:
logging.error(f"Error processing PDF: {e}")
return f"Error processing PDF: {str(e)}", "", [], None
def generate_prompt(text, template, snippet_idx=None):
"""Generate prompt from text or selected snippet"""
try:
if not text:
return "No text available.", "", None
default_prompt = "Summarize the following text:"
prompt_template = template if template else default_prompt
if isinstance(text, list):
# If text is list of snippets
if snippet_idx is not None:
if 0 <= snippet_idx < len(text):
content = text[snippet_idx]
else:
return "Invalid snippet index.", "", None
else:
content = "\n\n".join(text)
else:
content = text
prompt = f"{prompt_template}\n---\n{content}\n---"
# Save prompt for download
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
prompt_file.write(prompt)
return "Prompt generated!", prompt, [prompt_file.name]
except Exception as e:
logging.error(f"Error generating prompt: {e}")
return f"Error generating prompt: {str(e)}", "", None
def download_file(content: str, prefix: str = "file") -> List[str]:
"""Create a downloadable file with content and better error handling"""
if not content:
return []
try:
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt', prefix=prefix) as f:
f.write(content)
return [f.name]
except Exception as e:
logging.error(f"Error creating download file: {e}")
return []
# Main Interface
with gr.Blocks(theme=gr.themes.Default()) as demo:
# State variables
pdf_content = gr.State("")
snippets = gr.State([])
# Header
gr.Markdown("# π Smart PDF Summarizer")
gr.Markdown("Upload a PDF document and get AI-powered summaries using various AI models.")
with gr.Tabs() as tabs:
# Tab 1: PDF Processing
with gr.Tab("1οΈβ£ PDF Processing"):
with gr.Row():
with gr.Column(scale=1):
pdf_input = gr.File(
label="π Upload PDF",
file_types=[".pdf"]
)
format_type = gr.Radio(
choices=["txt", "md", "html"],
value="txt",
label="π Output Format"
)
context_size = gr.Slider(
minimum=1000,
maximum=200000,
step=1000,
value=4096,
label="Context Size"
)
with gr.Row():
for size_name, size_value in CONTEXT_SIZES.items():
gr.Button(
size_name,
size="sm",
scale=1
).click(
lambda v=size_value: v, # Simplified
None,
context_size
)
process_button = gr.Button("π Process PDF", variant="primary")
with gr.Column(scale=1):
progress_status = gr.Textbox(
label="Status",
interactive=False,
show_label=True,
visible=True # Ensure error messages are always visible
)
processed_text = gr.Textbox(
label="Processed Text",
lines=10,
max_lines=50,
show_copy_button=True
)
download_full_text = gr.Button("π₯ Download Full Text")
# Tab 2: Snippet Selection
with gr.Tab("2οΈβ£ Snippet Selection"):
with gr.Row():
with gr.Column(scale=1):
snippet_selector = gr.Dropdown(
label="Select Snippet",
choices=[],
interactive=True
)
custom_prompt = gr.Textbox(
label="βοΈ Custom Prompt Template",
placeholder="Enter your custom prompt here...",
lines=2
)
generate_prompt_btn = gr.Button("Generate Prompt", variant="primary")
with gr.Column(scale=1):
generated_prompt = gr.Textbox(
label="π Generated Prompt",
lines=10,
max_lines=50,
show_copy_button=True,
elem_id="generated_prompt" # Add this
)
with gr.Row():
copy_prompt_button = gr.Button("π Copy Prompt")
download_prompt = gr.Button("π₯ Download Prompt")
download_snippet = gr.Button("π₯ Download Selected Snippet")
# Tab 3: Model Processing
with gr.Tab("3οΈβ£ Model Processing"):
with gr.Row():
with gr.Column(scale=1):
model_choice = gr.Radio(
choices=["OpenAI ChatGPT", "HuggingFace Inference", "Groq API"],
value="OpenAI ChatGPT",
label="π€ Model Selection"
)
with gr.Column(visible=False) as openai_options:
openai_api_key = gr.Textbox(
label="π OpenAI API Key",
type="password"
)
with gr.Column(visible=False) as hf_options:
hf_model = gr.Dropdown(
choices=list(model_registry.hf_models.keys()),
label="π§ HuggingFace Model",
value="Phi-3 Mini 128k"
)
hf_custom_model = gr.Textbox(
label="Custom Model ID",
visible=False
)
hf_api_key = gr.Textbox(
label="π HuggingFace API Key",
type="password"
)
with gr.Column(visible=False) as groq_options:
groq_model = gr.Dropdown(
choices=list(model_registry.groq_models.keys()),
label="π§ Groq Model"
)
groq_refresh_btn = gr.Button("π Refresh Models")
groq_api_key = gr.Textbox(
label="π Groq API Key",
type="password"
)
send_to_model_btn = gr.Button("π Send to Model", variant="primary")
open_chatgpt_button = gr.Button("π Open ChatGPT")
with gr.Column(scale=1):
summary_output = gr.Textbox(
label="π Summary",
lines=15,
max_lines=50,
show_copy_button=True,
elem_id="summary_output" # Add this
)
with gr.Row():
copy_summary_button = gr.Button("π Copy Summary")
download_summary = gr.Button("π₯ Download Summary")
# Hidden components for file handling
download_files = gr.Files(label="π₯ Downloads", visible=False)
# Event Handlers
def update_context_size(size: int) -> None:
"""Update context size slider with validation"""
if not isinstance(size, (int, float)):
size = 4096 # Default size
return gr.update(value=int(size))
def get_model_context_size(choice: str, groq_model: str = None) -> int:
"""Get context size for model with better defaults"""
if choice == "Groq API" and groq_model:
return MODEL_CONTEXT_SIZES["Groq API"].get(groq_model, 4096)
elif choice == "OpenAI ChatGPT":
return 4096
elif choice == "HuggingFace Inference":
return 4096
return 32000 # Safe default
def update_snippet_choices(snippets_list: List[str]) -> List[str]:
"""Create formatted snippet choices"""
return [f"Snippet {i+1} of {len(snippets_list)}" for i in range(len(snippets_list))]
def get_snippet_index(choice: str) -> int:
"""Extract snippet index from choice string"""
if not choice:
return 0
try:
return int(choice.split()[1]) - 1
except:
return 0
def toggle_model_options(choice):
return (
gr.update(visible=choice == "HuggingFace Inference"),
gr.update(visible=choice == "Groq API"),
gr.update(visible=choice == "OpenAI ChatGPT")
)
def refresh_groq_models_list():
updated_models = model_registry.refresh_groq_models()
return gr.update(choices=list(updated_models.keys()))
def toggle_custom_model(model_name):
return gr.update(visible=model_name == "Custom Model")
def handle_model_change(choice):
"""Handle model selection change"""
return (
gr.update(visible=choice == "HuggingFace Inference"),
gr.update(visible=choice == "Groq API"),
gr.update(visible=choice == "OpenAI ChatGPT"),
update_context_size(choice)
)
def handle_groq_model_change(model_name):
"""Handle Groq model selection change"""
return update_context_size("Groq API", model_name)
def handle_model_selection(choice):
"""Handle model selection and update UI"""
ctx_size = get_model_context_size(choice)
return (
gr.update(visible=choice == "HuggingFace Inference"), # hf_options
gr.update(visible=choice == "Groq API"), # groq_options
gr.update(visible=choice == "OpenAI ChatGPT"), # openai_options
gr.update(value=ctx_size) # context_size
)
# PDF Processing Handlers
def handle_pdf_process(pdf, fmt, ctx_size):
"""Process PDF and update UI state"""
if not pdf:
return (
"Please upload a PDF file.", # progress_status
"", # processed_text
"", # pdf_content
[], # snippets
gr.update(choices=[], value=None), # snippet_selector
None # download_files
)
try:
# Extract and format text
text = extract_text_from_pdf(pdf.name)
if text.startswith("Error"):
return (
text,
"",
"",
[],
gr.update(choices=[], value=None),
None
)
formatted_text = format_content(text, fmt)
snippets_list = split_into_snippets(formatted_text, ctx_size)
# Create downloadable full text
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f:
f.write(formatted_text)
download_file = f.name
return (
f"PDF processed successfully! Generated {len(snippets_list)} snippets.",
formatted_text,
formatted_text,
snippets_list,
gr.update(choices=update_snippet_choices(snippets_list), value="Snippet 1 of " + str(len(snippets_list))),
[download_file]
)
except Exception as e:
error_msg = f"Error processing PDF: {str(e)}"
logging.error(error_msg)
return (
error_msg,
"",
"",
[],
gr.update(choices=[], value=None),
None
)
def handle_snippet_selection(choice, snippets_list):
"""Handle snippet selection and update prompt"""
if not snippets_list:
return (
"No snippets available.", # progress_status
"", # generated_prompt
None # download_files
)
try:
idx = get_snippet_index(choice)
selected_snippet = snippets_list[idx]
# Create downloadable snippet
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f:
f.write(selected_snippet)
return (
f"Selected snippet {idx + 1}",
selected_snippet,
[f.name]
)
except Exception as e:
error_msg = f"Error selecting snippet: {str(e)}"
logging.error(error_msg)
return (
error_msg,
"",
None
)
# Copy button handlers
def handle_prompt_generation(snippet_text, template, snippet_choice, snippets_list):
"""Generate prompt from selected snippet"""
if not snippet_text or not snippets_list:
return "No text available for prompt generation.", "", None
try:
idx = get_snippet_index(snippet_choice)
prompt = generate_prompt(snippets_list[idx], template or "Summarize the following text:")
# Create downloadable prompt
with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as f:
f.write(prompt)
return "Prompt generated successfully!", prompt, [f.name]
except Exception as e:
error_msg = f"Error generating prompt: {str(e)}"
logging.error(error_msg)
return error_msg, "", None
def handle_copy_action(text):
"""Handle copy to clipboard action"""
return {
progress_status: gr.update(value="Text copied to clipboard!", visible=True)
}
# Connect all event handlers
# Core event handlers
process_button.click(
handle_pdf_process,
inputs=[pdf_input, format_type, context_size],
outputs=[ # List of outputs, not dict
progress_status,
processed_text,
pdf_content,
snippets,
snippet_selector,
download_files
]
)
generate_prompt_btn.click(
handle_prompt_generation,
inputs=[generated_prompt, custom_prompt, snippet_selector, snippets],
outputs=[
progress_status,
generated_prompt,
download_files
]
)
# Snippet handling
snippet_selector.change(
handle_snippet_selection,
inputs=[snippet_selector, snippets],
outputs=[
progress_status,
generated_prompt,
download_files
]
)
# Model selection
model_choice.change(
handle_model_selection,
inputs=[model_choice],
outputs=[
hf_options,
groq_options,
openai_options,
context_size
]
)
hf_model.change(
toggle_custom_model,
inputs=[hf_model],
outputs=[hf_custom_model]
)
groq_model.change(
handle_groq_model_change,
inputs=[groq_model],
outputs=[context_size]
)
# Context size buttons
for size_name, size_value in CONTEXT_SIZES.items():
gr.Button(
size_name,
size="sm",
scale=1
).click(
lambda v=size_value: gr.update(value=v),
None,
context_size
)
# Download handlers (simplified)
for btn, content in [
(download_full_text, pdf_content),
(download_snippet, generated_prompt),
(download_prompt, generated_prompt),
(download_summary, summary_output)
]:
btn.click(
lambda x: [x] if x else None,
inputs=[content],
outputs=[download_files]
)
# Copy button handlers
for btn, elem_id in [
(copy_prompt_button, "generated_prompt"),
(copy_summary_button, "summary_output")
]:
btn.click(
fn=None,
_js=copy_text_js(elem_id),
outputs=progress_status
)
# ChatGPT handler
open_chatgpt_button.click(
fn=None,
_js="() => { window.open('https://chat.openai.com/', '_blank'); return 'Opened ChatGPT in new tab'; }",
outputs=progress_status
)
# Model processing
send_to_model_btn.click(
send_to_model,
inputs=[
generated_prompt,
model_choice,
hf_model,
hf_custom_model,
hf_api_key,
groq_model,
groq_api_key,
openai_api_key
],
outputs=[
summary_output,
download_files
]
)
groq_refresh_btn.click(
refresh_groq_models_list,
outputs=[groq_model]
)
# Instructions
gr.Markdown("""
### π Instructions:
1. Upload a PDF document
2. Choose output format and context window size
3. Select snippet number (default: 1) or enter custom prompt
4. Select your preferred model in case you want to proceed directly (or continue with 5):
- OpenAI ChatGPT: Manual copy/paste workflow
- HuggingFace Inference: Direct API integration
- Groq API: High-performance inference
5. Click 'Process PDF' to generate summary
6. Use 'Copy Prompt' and, optionally, 'Open ChatGPT' for manual processing
7. Download generated files as needed
""")
# Launch the interface
if __name__ == "__main__":
demo.launch(share=False, debug=True) |