File size: 16,284 Bytes
9d8df86
 
 
 
38b3cc5
9d8df86
 
ff1b4d3
897fb70
 
 
38b3cc5
9d8df86
 
 
897fb70
ff1b4d3
 
 
 
 
 
 
 
897fb70
 
 
 
 
 
 
ff1b4d3
897fb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff1b4d3
897fb70
9d8df86
38b3cc5
9d8df86
 
 
 
 
 
 
 
 
 
 
38b3cc5
9d8df86
 
 
897fb70
9d8df86
 
 
 
 
 
 
 
 
 
 
 
 
897fb70
9d8df86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
897fb70
9d8df86
ff1b4d3
 
 
 
 
 
 
 
9d8df86
ff1b4d3
 
 
 
 
 
 
 
 
9d8df86
ff1b4d3
 
9d8df86
897fb70
 
9d8df86
897fb70
 
 
 
 
 
38b3cc5
897fb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d8df86
897fb70
 
9d8df86
 
38b3cc5
897fb70
 
 
9d8df86
 
897fb70
38b3cc5
9d8df86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff1b4d3
 
 
897fb70
ff1b4d3
897fb70
 
ff1b4d3
9d8df86
ff1b4d3
 
 
9d8df86
ff1b4d3
9d8df86
 
 
ff1b4d3
 
9d8df86
 
 
 
 
 
 
 
 
 
897fb70
9d8df86
 
 
 
897fb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff1b4d3
897fb70
 
 
 
 
 
 
 
 
 
ff1b4d3
9d8df86
 
 
897fb70
 
9d8df86
 
 
 
 
 
 
 
 
 
ff1b4d3
 
 
 
9d8df86
 
 
 
 
 
ff1b4d3
 
 
9d8df86
 
 
897fb70
 
9d8df86
897fb70
 
 
 
 
 
 
 
 
 
 
 
9d8df86
 
 
897fb70
9d8df86
897fb70
9d8df86
897fb70
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9d8df86
 
 
 
 
 
 
 
 
897fb70
 
 
 
 
9d8df86
 
 
 
 
ff1b4d3
9d8df86
 
897fb70
ff1b4d3
 
 
 
 
897fb70
ff1b4d3
 
 
 
 
897fb70
ff1b4d3
 
 
 
9d8df86
 
 
 
ff1b4d3
 
 
897fb70
 
 
 
ff1b4d3
 
 
9d8df86
 
 
 
ff1b4d3
897fb70
ff1b4d3
 
9d8df86
 
38b3cc5
9d8df86
38b3cc5
9d8df86
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import os
import re
import tempfile
import requests
import gradio as gr
from PyPDF2 import PdfReader
import logging
import webbrowser
from huggingface_hub import InferenceClient
from typing import Dict, List, Optional, Tuple
import time

# Set up logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')

# Constants
CONTEXT_SIZES = {
    "4K": 4000,
    "8K": 8000,
    "32K": 32000,
    "128K": 128000,
    "200K": 200000
}

class ModelRegistry:
    def __init__(self):
        self.hf_models = {
            "Phi-3 Mini 128k": "microsoft/Phi-3-mini-128k-instruct",
            "Custom Model": ""
        }
        self.groq_models = self._fetch_groq_models()

    def _fetch_groq_models(self) -> Dict[str, str]:
        """Fetch available Groq models"""
        try:
            headers = {
                "Authorization": f"Bearer {os.getenv('GROQ_API_KEY')}",
                "Content-Type": "application/json"
            }
            response = requests.get("https://api.groq.com/openai/v1/models", headers=headers)
            if response.status_code == 200:
                models = response.json().get("data", [])
                return {model["id"]: model["id"] for model in models}
            else:
                logging.error(f"Failed to fetch Groq models: {response.status_code}")
                return self._get_default_groq_models()
        except Exception as e:
            logging.error(f"Error fetching Groq models: {e}")
            return self._get_default_groq_models()

    def _get_default_groq_models(self) -> Dict[str, str]:
        """Return default Groq models when API is unavailable"""
        return {
            "llama-3.1-70b-versatile": "llama-3.1-70b-versatile",
            "mixtral-8x7b-32768": "mixtral-8x7b-32768",
            "llama-3.1-8b-instant": "llama-3.1-8b-instant"
        }

    def refresh_groq_models(self) -> Dict[str, str]:
        """Refresh the list of available Groq models"""
        self.groq_models = self._fetch_groq_models()
        return self.groq_models

# Initialize model registry
model_registry = ModelRegistry()

def extract_text_from_pdf(pdf_path: str) -> str:
    """Extract text content from PDF file."""
    try:
        reader = PdfReader(pdf_path)
        text = ""
        for page_num, page in enumerate(reader.pages, start=1):
            page_text = page.extract_text()
            if page_text:
                text += page_text + "\n"
            else:
                logging.warning(f"No text found on page {page_num}.")
        if not text.strip():
            return "Error: No extractable text found in the PDF."
        return text
    except Exception as e:
        logging.error(f"Error reading PDF file: {e}")
        return f"Error reading PDF file: {e}"

def format_content(text: str, format_type: str) -> str:
    """Format extracted text according to specified format."""
    if format_type == 'txt':
        return text
    elif format_type == 'md':
        paragraphs = text.split('\n\n')
        return '\n\n'.join(paragraphs)
    elif format_type == 'html':
        paragraphs = text.split('\n\n')
        return ''.join([f'<p>{para.strip()}</p>' for para in paragraphs if para.strip()])
    else:
        logging.error(f"Unsupported format: {format_type}")
        return f"Unsupported format: {format_type}"

def split_into_snippets(text: str, context_size: int) -> List[str]:
    """Split text into manageable snippets based on context size."""
    sentences = re.split(r'(?<=[.!?]) +', text)
    snippets = []
    current_snippet = ""

    for sentence in sentences:
        if len(current_snippet) + len(sentence) + 1 > context_size:
            if current_snippet:
                snippets.append(current_snippet.strip())
                current_snippet = sentence + " "
            else:
                snippets.append(sentence.strip())
                current_snippet = ""
        else:
            current_snippet += sentence + " "

    if current_snippet.strip():
        snippets.append(current_snippet.strip())

    return snippets

def build_prompts(snippets: List[str], prompt_instruction: str, custom_prompt: Optional[str], snippet_num: Optional[int] = None) -> str:
    """Build formatted prompts from text snippets."""
    if snippet_num is not None:
        if 1 <= snippet_num <= len(snippets):
            selected_snippets = [snippets[snippet_num - 1]]
        else:
            return f"Error: Invalid snippet number. Please choose between 1 and {len(snippets)}."
    else:
        selected_snippets = snippets

    prompts = []
    base_prompt = custom_prompt if custom_prompt else prompt_instruction
    
    for idx, snippet in enumerate(selected_snippets, start=1):
        if len(selected_snippets) > 1:
            prompt_header = f"{base_prompt} Part {idx} of {len(selected_snippets)}: ---\n"
        else:
            prompt_header = f"{base_prompt} ---\n"
        
        framed_prompt = f"{prompt_header}{snippet}\n---"
        prompts.append(framed_prompt)
    
    return "\n\n".join(prompts)

def send_to_hf_inference(prompt: str, model_name: str, api_key: str) -> str:
    """Send prompt to HuggingFace using Inference API"""
    try:
        client = InferenceClient(api_key=api_key)
        messages = [{"role": "user", "content": prompt}]
        completion = client.chat.completions.create(
            model=model_name,
            messages=messages,
            max_tokens=500
        )
        return completion.choices[0].message.content
    except Exception as e:
        logging.error(f"Error with HF inference: {e}")
        return f"Error with HF inference: {e}"

def send_to_groq(prompt: str, model_name: str, api_key: str) -> str:
    """Send prompt to Groq API"""
    try:
        headers = {
            "Authorization": f"Bearer {api_key}",
            "Content-Type": "application/json"
        }
        data = {
            "model": model_name,
            "messages": [{"role": "user", "content": prompt}]
        }
        response = requests.post(
            "https://api.groq.com/openai/v1/chat/completions",
            headers=headers,
            json=data
        )
        return response.json()["choices"][0]["message"]["content"]
    except Exception as e:
        logging.error(f"Error with Groq API: {e}")
        return f"Error with Groq API: {e}"

def copy_to_clipboard(text: str) -> str:
    """Copy text to clipboard"""
    return "Text copied to clipboard!"

def open_chatgpt() -> str:
    """Open ChatGPT in browser"""
    webbrowser.open('https://chat.openai.com/')
    return "Opening ChatGPT in browser..."

def process_pdf(pdf, fmt, ctx_size, snippet_num, prompt, model_selection, 
                hf_model_choice, hf_custom_model, hf_api_key,
                groq_model_choice, groq_api_key) -> Tuple[str, str, str, List[str]]:
    """Process PDF and generate summary"""
    try:
        if not pdf:
            return "Please upload a PDF file.", "", "", []
        
        # Extract text
        text = extract_text_from_pdf(pdf.name)
        if text.startswith("Error"):
            return text, "", "", []
        
        # Format content
        formatted_text = format_content(text, fmt)
        
        # Split into snippets
        snippets = split_into_snippets(formatted_text, ctx_size)
        
        # Build prompts
        default_prompt = "Summarize the following text:"
        full_prompt = build_prompts(snippets, default_prompt, prompt, snippet_num)
        
        if isinstance(full_prompt, str) and full_prompt.startswith("Error"):
            return full_prompt, "", "", []
        
        # Process with selected model
        if model_selection == "HuggingFace Inference":
            if not hf_api_key:
                return "HuggingFace API key required.", full_prompt, "", []
            
            model_id = hf_custom_model if hf_model_choice == "Custom Model" else model_registry.hf_models[hf_model_choice]
            summary = send_to_hf_inference(full_prompt, model_id, hf_api_key)
            
        elif model_selection == "Groq API":
            if not groq_api_key:
                return "Groq API key required.", full_prompt, "", []
                
            summary = send_to_groq(full_prompt, groq_model_choice, groq_api_key)
            
        else:  # OpenAI ChatGPT
            summary = "Please use the Copy Prompt button and paste into ChatGPT."
        
        # Save files for download
        files_to_download = []
        
        with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as prompt_file:
            prompt_file.write(full_prompt)
            files_to_download.append(prompt_file.name)
            
        if summary != "Please use the Copy Prompt button and paste into ChatGPT.":
            with tempfile.NamedTemporaryFile(delete=False, mode='w', suffix='.txt') as summary_file:
                summary_file.write(summary)
                files_to_download.append(summary_file.name)
        
        return "Processing complete!", full_prompt, summary, files_to_download
        
    except Exception as e:
        logging.error(f"Error processing PDF: {e}")
        return f"Error processing PDF: {str(e)}", "", "", []

# Main Interface
with gr.Blocks(theme=gr.themes.Default()) as demo:
    # Store context size value
    context_size_value = gr.State(value=32000)
    
    # Header
    gr.Markdown("# πŸ“„ Smart PDF Summarizer")
    gr.Markdown("Upload a PDF document and get AI-powered summaries using various AI models.")
    
    # Main Content
    with gr.Row():
        # Left Column - Input Options
        with gr.Column(scale=1):
            pdf_input = gr.File(
                label="πŸ“ Upload PDF",
                file_types=[".pdf"]
            )
            
            with gr.Row():
                format_type = gr.Radio(
                    choices=["txt", "md", "html"],
                    value="txt",
                    label="πŸ“ Output Format"
                )
            
            gr.Markdown("### Context Window Size")
            with gr.Row():
                context_buttons = []
                for size_name, size_value in CONTEXT_SIZES.items():
                    btn = gr.Button(size_name)
                    context_buttons.append((btn, size_value))
                        
            context_size = gr.Slider(
                minimum=1000,
                maximum=200000,
                step=1000,
                value=32000,
                label="πŸ“ Custom Context Size"
            )
            
            snippet_number = gr.Number(
                label="πŸ”’ Snippet Number",
                value=1,
                precision=0
            )
            
            custom_prompt = gr.Textbox(
                label="✍️ Custom Prompt",
                placeholder="Enter your custom prompt here...",
                lines=2
            )
            
            model_choice = gr.Radio(
                choices=["OpenAI ChatGPT", "HuggingFace Inference", "Groq API"],
                value="OpenAI ChatGPT",
                label="πŸ€– Model Selection"
            )
            
            with gr.Column(visible=False) as hf_options:
                hf_model = gr.Dropdown(
                    choices=list(model_registry.hf_models.keys()),
                    label="πŸ”§ HuggingFace Model",
                    value="Phi-3 Mini 128k"
                )
                hf_custom_model = gr.Textbox(
                    label="Custom Model ID",
                    placeholder="Enter custom model ID...",
                    visible=False
                )
                hf_api_key = gr.Textbox(
                    label="πŸ”‘ HuggingFace API Key",
                    type="password"
                )
            
            with gr.Column(visible=False) as groq_options:
                groq_model = gr.Dropdown(
                    choices=list(model_registry.groq_models.keys()),
                    label="πŸ”§ Groq Model",
                    value=list(model_registry.groq_models.keys())[0]
                )
                groq_refresh_btn = gr.Button("πŸ”„ Refresh Models")
                groq_api_key = gr.Textbox(
                    label="πŸ”‘ Groq API Key",
                    type="password"
                )

        # Right Column - Output
        with gr.Column(scale=1):
            process_button = gr.Button("πŸš€ Process PDF", variant="primary")
            
            progress_status = gr.Textbox(
                label="πŸ“Š Progress",
                interactive=False
            )
            
            generated_prompt = gr.Textbox(
                label="πŸ“‹ Generated Prompt",
                lines=10
            )
            
            with gr.Row():
                copy_prompt_button = gr.Button("πŸ“‹ Copy Prompt")
                open_chatgpt_button = gr.Button("🌐 Open ChatGPT")
            
            summary_output = gr.Textbox(
                label="πŸ“ Summary",
                lines=15
            )
            
            with gr.Row():
                copy_summary_button = gr.Button("πŸ“‹ Copy Summary")
                download_files = gr.Files(
                    label="πŸ“₯ Download Files"
                )

    # Event Handlers
    def update_context_size(size):
        return gr.update(value=size)

    def toggle_model_options(choice):
        return (
            gr.update(visible=choice == "HuggingFace Inference"),
            gr.update(visible=choice == "Groq API")
        )

def refresh_groq_models_list():
        updated_models = model_registry.refresh_groq_models()
        return gr.update(choices=list(updated_models.keys()))

    def toggle_custom_model(model_name):
        return gr.update(visible=model_name == "Custom Model")

    # Connect event handlers
    model_choice.change(
        toggle_model_options,
        inputs=[model_choice],
        outputs=[hf_options, groq_options]
    )

    for btn, size_value in context_buttons:
        btn.click(
            update_context_size,
            inputs=[],
            outputs=[context_size]
        ).then(
            lambda x=size_value: x,
            None,
            context_size
        )

    hf_model.change(
        toggle_custom_model,
        inputs=[hf_model],
        outputs=[hf_custom_model]
    )

    groq_refresh_btn.click(
        refresh_groq_models_list,
        outputs=[groq_model]
    )

    process_button.click(
        process_pdf,
        inputs=[
            pdf_input,
            format_type,
            context_size,
            snippet_number,
            custom_prompt,
            model_choice,
            hf_model,
            hf_custom_model,
            hf_api_key,
            groq_model,
            groq_api_key
        ],
        outputs=[
            progress_status,
            generated_prompt,
            summary_output,
            download_files
        ]
    )

    copy_prompt_button.click(
        copy_to_clipboard,
        inputs=[generated_prompt],
        outputs=[progress_status]
    )

    copy_summary_button.click(
        copy_to_clipboard,
        inputs=[summary_output],
        outputs=[progress_status]
    )

    open_chatgpt_button.click(
        open_chatgpt,
        outputs=[progress_status]
    )

    # Instructions
    gr.Markdown("""
    ### πŸ“Œ Instructions:
    1. Upload a PDF document
    2. Choose output format and context window size
    3. Select snippet number (default: 1) or enter custom prompt
    4. Select your preferred model:
       - OpenAI ChatGPT: Manual copy/paste workflow
       - HuggingFace Inference: Direct API integration
       - Groq API: High-performance inference
    5. Click 'Process PDF' to generate summary
    6. Use 'Copy Prompt' and 'Open ChatGPT' for manual processing
    7. Download generated files as needed

    ### βš™οΈ Features:
    - Support for multiple PDF formats
    - Flexible text formatting options
    - Predefined context window sizes (4K to 200K)
    - Multiple model integrations
    - Copy to clipboard functionality
    - Direct ChatGPT integration
    - Downloadable outputs
    """)

# Launch the interface
if __name__ == "__main__":
    demo.launch(share=False, debug=True)