File size: 4,576 Bytes
4d6e8c2
 
 
 
 
 
 
 
 
13923c6
10a1b87
bcc7121
10a1b87
2b9adc7
13923c6
 
 
 
 
3fae6a6
 
 
bcc7121
 
 
 
13923c6
4d6e8c2
 
70f5f26
1c33274
70f5f26
1c33274
70f5f26
4d6e8c2
 
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70f5f26
 
3a03067
115f829
bcc7121
2c1c057
3a03067
 
0fb4e95
 
 
 
 
3fae6a6
 
3a03067
 
bcc7121
2c1c057
bcc7121
2c1c057
 
 
 
 
31bc5e0
3a03067
9d214fc
3a03067
 
 
 
 
 
2c1c057
 
 
3a03067
 
2c1c057
3a03067
bcc7121
 
 
e1ebf1a
931352e
e1ebf1a
bcc7121
3a03067
 
 
 
e1ebf1a
3a03067
7cadf7a
 
 
d224140
3a03067
 
 
 
13923c6
bcba639
13923c6
 
4d6e8c2
 
 
71bbef9
70f5f26
 
 
 
 
4d6e8c2
 
 
 
 
3034e17
5358540
 
4d6e8c2
 
 
 
 
 
70f5f26
4d6e8c2
 
 
 
1c33274
4d6e8c2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import random

from .utils.evaluation import TextEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info


import os
import logging 
import numpy as np
print(os.getcwd())
#
from sentence_transformers import SentenceTransformer
from xgboost import XGBClassifier
import pickle

import xgboost as xgb


#logging 
logging.basicConfig(level=logging.INFO)

logging.info("LAS ESTRELLAS!!!!!")

router = APIRouter()

DESCRIPTION = "Random Baseline"
ROUTE = "/text"

@router.post(ROUTE, tags=["Text Task"], 
             description=DESCRIPTION)
async def evaluate_text(request: TextEvaluationRequest):
    """
    Evaluate text classification for climate disinformation detection.
    
    Current Model: Random Baseline
    - Makes random predictions from the label space (0-7)
    - Used as a baseline for comparison
    """
    # Get space info
    username, space_url = get_space_info()

    # Define the label mapping
    LABEL_MAPPING = {
        "0_not_relevant": 0,
        "1_not_happening": 1,
        "2_not_human": 2,
        "3_not_bad": 3,
        "4_solutions_harmful_unnecessary": 4,
        "5_science_unreliable": 5,
        "6_proponents_biased": 6,
        "7_fossil_fuels_needed": 7
    }

    # Load and prepare the dataset
    dataset = load_dataset(request.dataset_name)

    # Convert string labels to integers
    dataset = dataset.map(lambda x: {"label": LABEL_MAPPING[x["label"]]})

    # Split dataset
    train_test = dataset["train"].train_test_split(test_size=request.test_size, seed=request.test_seed)
    test_dataset = train_test["test"]
    
    # Start tracking emissions
    tracker.start()
    tracker.start_task("inference")

    #--------------------------------------------------------------------------------------------
    # Load a pre-trained Sentence-BERT model
    print("loading model")
    model = SentenceTransformer('sentence-transformers/all-MPNET-base-v2', device='cpu')
    

    #load the models
    with open("xgb_bin.pkl","rb") as f:
        xgb_bin = pickle.load(f)
        
    with open("xgb_multi.pkl","rb") as f:
        xgb_multi = pickle.load(f)
    




    logging.info("generating embedding")

    # Generate sentence embeddings
    sentence_embeddings = model.encode(test_dataset["quote"])
    logging.info(" embedding done")
    
    
    X_train = sentence_embeddings.copy()
    
    y_train = np.array(test_dataset["label"].copy())

    #binary
    y_train_binary = y_train.copy()
    y_train_binary[y_train_binary != 0] = 1


    


    #multi class
    X_train_multi = X_train[y_train != 0]
    
    y_train_multi = y_train[y_train != 0]
    
    logging.info(f"Xtrain_multi_shape:{X_train_multi.shape}")
    logging.info(f"Xtrain shape:{X_train.shape}")

    
    
                  

    #predictions
    y_pred_bin = xgb_bin.predict(X_train)

    y_pred_multi = xgb_multi.predict(X_train_multi.reshape(-1,768)) + 1

    logging.info(f"y_pred_bin:{y_pred_bin.shape}")
    logging.info(f"y_pred_multi shape:{y_pred_multi.shape}")

    y_pred_bin[y_train_binary==1] = y_pred_multi
    
    
    



    #predictions = xgb.predict(embeddings)
        
    
    # Make random predictions (placeholder for actual model inference)
    true_labels = test_dataset["label"]
    #predictions = xgb.predict(embeddings)

    #--------------------------------------------------------------------------------------------
    # YOUR MODEL INFERENCE STOPS HERE
    #--------------------------------------------------------------------------------------------   

    
    # Stop tracking emissions
    emissions_data = tracker.stop_task()
    
    # Calculate accuracy
    accuracy = accuracy_score(true_labels, y_pred_bin)

    logging.info(f"Accuracy : {accuracy}")
    
    # Prepare results dictionary
    results = {
        "username": username,
        "space_url": space_url,
        "submission_timestamp": datetime.now().isoformat(),
        "model_description": DESCRIPTION,
        "accuracy": float(accuracy),
        "energy_consumed_wh": emissions_data.energy_consumed * 1000,
        "emissions_gco2eq": emissions_data.emissions * 1000,
        "emissions_data": clean_emissions_data(emissions_data),
        "api_route": ROUTE,
        "dataset_config": {
            "dataset_name": request.dataset_name,
            "test_size": request.test_size,
            "test_seed": request.test_seed
        }
    }
    
    return results