import gradio as gr from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.document_loaders import WebBaseLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.llms import HuggingFacePipeline from transformers import pipeline import tempfile import os from bs4 import BeautifulSoup import requests import pyttsx3 # CPU-friendly summarization LLM summary_pipe = pipeline("text2text-generation", model="google/flan-t5-base", device=-1) llm = HuggingFacePipeline(pipeline=summary_pipe) # Summarization prompt summary_prompt = PromptTemplate.from_template(""" Summarize the following article content in a clear, concise, and emotionally engaging manner as if you're speaking to a curious listener: {text} Summary: """) summary_chain = LLMChain(llm=llm, prompt=summary_prompt) def extract_main_content(url): try: response = requests.get(url, timeout=10) soup = BeautifulSoup(response.content, "html.parser") for tag in soup(["nav", "header", "footer", "aside", "script", "style", "noscript"]): tag.decompose() paragraphs = soup.find_all("p") content = "\n".join([p.get_text() for p in paragraphs if len(p.get_text()) > 60]) return content.strip() except Exception as e: return f"Error extracting article content: {str(e)}" def generate_human_like_audio(text): try: engine = pyttsx3.init() engine.setProperty('rate', 150) # slower pace engine.setProperty('volume', 1.0) voices = engine.getProperty('voices') # Choose a more natural voice if available (optional: pick female) for voice in voices: if 'female' in voice.name.lower(): engine.setProperty('voice', voice.id) break temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") engine.save_to_file(text, temp_path.name) engine.runAndWait() return temp_path.name except Exception as e: return None def url_to_audio_summary(url): try: article_text = extract_main_content(url) if article_text.startswith("Error"): return article_text, None summary = summary_chain.run(text=article_text) audio_path = generate_human_like_audio(summary) if not audio_path: return summary, None return summary, audio_path except Exception as e: return f"Error: {str(e)}", None iface = gr.Interface( fn=url_to_audio_summary, inputs=gr.Textbox(label="Article URL", placeholder="Paste a news/blog URL here..."), outputs=[ gr.Textbox(label="Summary"), gr.Audio(label="Audio Summary") ], title="URL to Audio Summary Agent", description="Summarizes only the article content from a URL and gives a more human-like audio summary using pyttsx3. CPU-only." ) if __name__ == "__main__": iface.launch()