import gradio as gr from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.document_loaders import WebBaseLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.llms import HuggingFacePipeline from transformers import pipeline from gtts import gTTS import tempfile import os # CPU-friendly summarization LLM summary_pipe = pipeline("text2text-generation", model="google/flan-t5-base", device=-1) llm = HuggingFacePipeline(pipeline=summary_pipe) # Summarization prompt summary_prompt = PromptTemplate.from_template(""" Summarize the following webpage content in a clear, concise way: {text} Summary: """) summary_chain = LLMChain(llm=llm, prompt=summary_prompt) def url_to_audio_summary(url): try: loader = WebBaseLoader(url) docs = loader.load() splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100) splits = splitter.split_documents(docs) full_text = "\n".join([s.page_content for s in splits]) summary = summary_chain.run(text=full_text) # Use gTTS for TTS since Hugging Face TTS model failed tts = gTTS(text=summary) temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") tts.save(temp_path.name) return summary, temp_path.name except Exception as e: return f"Error: {str(e)}", None iface = gr.Interface( fn=url_to_audio_summary, inputs=gr.Textbox(label="Article URL", placeholder="Paste a news/blog URL here..."), outputs=[ gr.Textbox(label="Summary"), gr.Audio(label="Audio Summary") ], title="URL to Audio Summary Agent", description="Summarizes article from a URL and gives an audio summary. CPU-only using gTTS." ) if __name__ == "__main__": iface.launch()