import gradio as gr from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.document_loaders import WebBaseLoader from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.llms import HuggingFacePipeline from transformers import pipeline import tempfile import os # Step 1: CPU-friendly summarization LLM (Flan-T5 Small) summary_pipe = pipeline("text2text-generation", model="google/flan-t5-base", device=-1) llm = HuggingFacePipeline(pipeline=summary_pipe) # Step 2: Summarization Prompt summary_prompt = PromptTemplate.from_template(""" Summarize the following webpage content in a clear, concise way: {text} Summary: """) summary_chain = LLMChain(llm=llm, prompt=summary_prompt) # Step 3: URL to Text -> Summarize -> Text to Speech def url_to_audio_summary(url): try: # Load and split text loader = WebBaseLoader(url) docs = loader.load() splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100) splits = splitter.split_documents(docs) full_text = "\n".join([s.page_content for s in splits]) # Summarize summary = summary_chain.run(text=full_text) # Text to Speech tts_pipe = pipeline("text-to-speech", model="espnet/kan-bayashi_ljspeech_vits", device=-1) audio = tts_pipe(summary)["audio"] # Save audio to temp WAV with tempfile.NamedTemporaryFile(delete=False, suffix=".wav") as f: f.write(audio) audio_path = f.name return summary, audio_path except Exception as e: return f"Error: {str(e)}", None # Step 4: Gradio Interface iface = gr.Interface( fn=url_to_audio_summary, inputs=gr.Textbox(label="Article URL", placeholder="Paste a news/blog URL here..."), outputs=[ gr.Textbox(label="Summary"), gr.Audio(label="Audio Summary") ], title="🗣️ URL to Audio Summary Agent", description="An agent that reads web articles and gives you an audio summary. CPU-only. Built with LangChain + Hugging Face." ) if __name__ == "__main__": iface.launch()