import gradio as gr from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.llms import HuggingFacePipeline from transformers import pipeline from bs4 import BeautifulSoup import requests from TTS.api import TTS import tempfile import os import shutil # Setup summarization LLM summary_pipe = pipeline("text2text-generation", model="google/flan-t5-base", device=-1) llm = HuggingFacePipeline(pipeline=summary_pipe) # Prompt for more engaging summary summary_prompt = PromptTemplate.from_template(""" Summarize the following article content in a clear, warm, and motivational tone like a preacher speaking to an audience: {text} Summary: """) summary_chain = LLMChain(llm=llm, prompt=summary_prompt) # TTS model setup tts_model = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False) def extract_main_content(url): try: response = requests.get(url, timeout=10) soup = BeautifulSoup(response.content, "html.parser") for tag in soup(["nav", "header", "footer", "aside", "script", "style", "noscript"]): tag.decompose() paragraphs = soup.find_all("p") content = "\n".join([p.get_text() for p in paragraphs if len(p.get_text()) > 60]) return content.strip() except Exception as e: return f"Error extracting article content: {str(e)}" def generate_human_like_audio(text): try: temp_dir = tempfile.mkdtemp() wav_path = os.path.join(temp_dir, "summary.wav") mp3_path = os.path.join(temp_dir, "summary.mp3") tts_model.tts_to_file(text=text, file_path=wav_path) # Convert to mp3 for download link (requires ffmpeg in Hugging Face Spaces) os.system(f"ffmpeg -y -i {wav_path} -codec:a libmp3lame -qscale:a 4 {mp3_path}") if os.path.exists(mp3_path): return wav_path, mp3_path else: return wav_path, None except Exception as e: print(f"TTS ERROR: {e}") return None, None def url_to_audio_summary(url): try: article_text = extract_main_content(url) if article_text.startswith("Error"): return article_text, None, None if len(article_text) > 1500: article_text = article_text[:1500] + "..." summary = summary_chain.invoke({"text": article_text}) summary = summary["text"] if isinstance(summary, dict) and "text" in summary else summary wav_path, mp3_path = generate_human_like_audio(summary) return summary, wav_path, mp3_path except Exception as e: return f"Error: {str(e)}", None, None def interface_wrapper(url): summary, wav_path, mp3_path = url_to_audio_summary(url) download_html = "" if mp3_path and os.path.exists(mp3_path): download_html = f'Click to download MP3' return summary, wav_path, download_html iface = gr.Interface( fn=interface_wrapper, inputs=gr.Textbox(label="Article URL", placeholder="Paste a news/blog URL here..."), outputs=[ gr.Textbox(label="Summary"), gr.Audio(label="Preacher-style Audio Summary", type="filepath"), gr.HTML(label="Download MP3") ], title="Preaching-Style URL to Audio Agent", description="Summarizes article content and reads it aloud in a warm, preacher-style voice using YourTTS. CPU-only." ) if __name__ == "__main__": iface.launch()