Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,23 +1,20 @@
|
|
1 |
import gradio as gr
|
2 |
from langchain.chains import LLMChain
|
3 |
from langchain.prompts import PromptTemplate
|
4 |
-
from langchain.document_loaders import WebBaseLoader
|
5 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain.llms import HuggingFacePipeline
|
7 |
from transformers import pipeline
|
8 |
-
import tempfile
|
9 |
-
import os
|
10 |
from bs4 import BeautifulSoup
|
11 |
import requests
|
12 |
-
import
|
|
|
13 |
|
14 |
-
#
|
15 |
summary_pipe = pipeline("text2text-generation", model="google/flan-t5-base", device=-1)
|
16 |
llm = HuggingFacePipeline(pipeline=summary_pipe)
|
17 |
|
18 |
-
#
|
19 |
summary_prompt = PromptTemplate.from_template("""
|
20 |
-
Summarize the following article content in a clear,
|
21 |
|
22 |
{text}
|
23 |
|
@@ -26,6 +23,9 @@ Summary:
|
|
26 |
|
27 |
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
|
28 |
|
|
|
|
|
|
|
29 |
def extract_main_content(url):
|
30 |
try:
|
31 |
response = requests.get(url, timeout=10)
|
@@ -42,21 +42,8 @@ def extract_main_content(url):
|
|
42 |
|
43 |
def generate_human_like_audio(text):
|
44 |
try:
|
45 |
-
|
46 |
-
|
47 |
-
engine.setProperty('volume', 1.0)
|
48 |
-
voices = engine.getProperty('voices')
|
49 |
-
|
50 |
-
# Choose a more natural voice if available (optional: pick female)
|
51 |
-
for voice in voices:
|
52 |
-
if 'female' in voice.name.lower():
|
53 |
-
engine.setProperty('voice', voice.id)
|
54 |
-
break
|
55 |
-
|
56 |
-
temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
|
57 |
-
engine.save_to_file(text, temp_path.name)
|
58 |
-
engine.runAndWait()
|
59 |
-
|
60 |
return temp_path.name
|
61 |
except Exception as e:
|
62 |
return None
|
@@ -74,7 +61,6 @@ def url_to_audio_summary(url):
|
|
74 |
return summary, None
|
75 |
|
76 |
return summary, audio_path
|
77 |
-
|
78 |
except Exception as e:
|
79 |
return f"Error: {str(e)}", None
|
80 |
|
@@ -83,10 +69,10 @@ iface = gr.Interface(
|
|
83 |
inputs=gr.Textbox(label="Article URL", placeholder="Paste a news/blog URL here..."),
|
84 |
outputs=[
|
85 |
gr.Textbox(label="Summary"),
|
86 |
-
gr.Audio(label="Audio Summary")
|
87 |
],
|
88 |
-
title="URL to Audio
|
89 |
-
description="Summarizes
|
90 |
)
|
91 |
|
92 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from langchain.chains import LLMChain
|
3 |
from langchain.prompts import PromptTemplate
|
|
|
|
|
4 |
from langchain.llms import HuggingFacePipeline
|
5 |
from transformers import pipeline
|
|
|
|
|
6 |
from bs4 import BeautifulSoup
|
7 |
import requests
|
8 |
+
from TTS.api import TTS
|
9 |
+
import tempfile
|
10 |
|
11 |
+
# Setup summarization LLM
|
12 |
summary_pipe = pipeline("text2text-generation", model="google/flan-t5-base", device=-1)
|
13 |
llm = HuggingFacePipeline(pipeline=summary_pipe)
|
14 |
|
15 |
+
# Prompt for more engaging summary
|
16 |
summary_prompt = PromptTemplate.from_template("""
|
17 |
+
Summarize the following article content in a clear, warm, and motivational tone like a preacher speaking to an audience:
|
18 |
|
19 |
{text}
|
20 |
|
|
|
23 |
|
24 |
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
|
25 |
|
26 |
+
# TTS model setup (multi-lingual, expressive)
|
27 |
+
tts_model = TTS(model_name="tts_models/multilingual/multi-dataset/your_tts", progress_bar=False, gpu=False)
|
28 |
+
|
29 |
def extract_main_content(url):
|
30 |
try:
|
31 |
response = requests.get(url, timeout=10)
|
|
|
42 |
|
43 |
def generate_human_like_audio(text):
|
44 |
try:
|
45 |
+
temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".wav")
|
46 |
+
tts_model.tts_to_file(text=text, file_path=temp_path.name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
return temp_path.name
|
48 |
except Exception as e:
|
49 |
return None
|
|
|
61 |
return summary, None
|
62 |
|
63 |
return summary, audio_path
|
|
|
64 |
except Exception as e:
|
65 |
return f"Error: {str(e)}", None
|
66 |
|
|
|
69 |
inputs=gr.Textbox(label="Article URL", placeholder="Paste a news/blog URL here..."),
|
70 |
outputs=[
|
71 |
gr.Textbox(label="Summary"),
|
72 |
+
gr.Audio(label="Preacher-style Audio Summary")
|
73 |
],
|
74 |
+
title="Preaching-Style URL to Audio Agent",
|
75 |
+
description="Summarizes article content and reads it aloud in a warm, preacher-style voice using YourTTS. CPU-only."
|
76 |
)
|
77 |
|
78 |
if __name__ == "__main__":
|