Spaces:
Running
Running
File size: 1,840 Bytes
d9efe10 f4064e9 d9efe10 f4064e9 d9efe10 f4064e9 d9efe10 f4064e9 d9efe10 f4064e9 d9efe10 f4064e9 d9efe10 f4064e9 d9efe10 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 |
import gradio as gr
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.document_loaders import WebBaseLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.llms import HuggingFacePipeline
from transformers import pipeline
from gtts import gTTS
import tempfile
import os
# CPU-friendly summarization LLM
summary_pipe = pipeline("text2text-generation", model="google/flan-t5-base", device=-1)
llm = HuggingFacePipeline(pipeline=summary_pipe)
# Summarization prompt
summary_prompt = PromptTemplate.from_template("""
Summarize the following webpage content in a clear, concise way:
{text}
Summary:
""")
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
def url_to_audio_summary(url):
try:
loader = WebBaseLoader(url)
docs = loader.load()
splitter = RecursiveCharacterTextSplitter(chunk_size=2000, chunk_overlap=100)
splits = splitter.split_documents(docs)
full_text = "\n".join([s.page_content for s in splits])
summary = summary_chain.run(text=full_text)
# Use gTTS for TTS since Hugging Face TTS model failed
tts = gTTS(text=summary)
temp_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3")
tts.save(temp_path.name)
return summary, temp_path.name
except Exception as e:
return f"Error: {str(e)}", None
iface = gr.Interface(
fn=url_to_audio_summary,
inputs=gr.Textbox(label="Article URL", placeholder="Paste a news/blog URL here..."),
outputs=[
gr.Textbox(label="Summary"),
gr.Audio(label="Audio Summary")
],
title="URL to Audio Summary Agent",
description="Summarizes article from a URL and gives an audio summary. CPU-only using gTTS."
)
if __name__ == "__main__":
iface.launch()
|