import gradio as gr from langchain.chains import LLMChain from langchain.prompts import PromptTemplate from langchain.llms import HuggingFacePipeline from transformers import pipeline from gtts import gTTS from bs4 import BeautifulSoup import tempfile import os import requests from moviepy.editor import * # CPU-friendly summarization model summary_pipe = pipeline("text2text-generation", model="google/flan-t5-base", device=-1) llm = HuggingFacePipeline(pipeline=summary_pipe) # LangChain summarization prompt summary_prompt = PromptTemplate.from_template(""" Summarize the following article content in a clear, concise way: {text} Summary: """) summary_chain = LLMChain(llm=llm, prompt=summary_prompt) def extract_main_content(url): try: response = requests.get(url, timeout=10) soup = BeautifulSoup(response.content, "html.parser") for tag in soup(["nav", "header", "footer", "aside", "script", "style", "noscript"]): tag.decompose() paragraphs = soup.find_all("p") content = "\n".join([p.get_text() for p in paragraphs if len(p.get_text()) > 60]) return content.strip() except Exception as e: return f"Error extracting article content: {str(e)}" def url_to_av_summary(url): try: article_text = extract_main_content(url) if article_text.startswith("Error"): return article_text, None summary = summary_chain.run(text=article_text) # Generate speech using gTTS tts = gTTS(text=summary) audio_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name tts.save(audio_path) # Create video clip (text overlay + audio) video_clip = TextClip(summary, fontsize=32, color='white', bg_color='black', size=(1280, 720), method='caption') video_clip = video_clip.set_duration(AudioFileClip(audio_path).duration) video_clip = video_clip.set_audio(AudioFileClip(audio_path)) video_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name video_clip.write_videofile(video_path, fps=24, codec='libx264') return summary, video_path except Exception as e: return f"Error: {str(e)}", None iface = gr.Interface( fn=url_to_av_summary, inputs=gr.Textbox(label="Article URL", placeholder="Paste a news/blog URL here..."), outputs=[ gr.Textbox(label="Summary"), gr.Video(label="Video Summary") ], title="URL to AV Summary Agent", description="Summarizes only article content from a URL and creates a narrated video. CPU-only." ) if __name__ == "__main__": iface.launch()