Spaces:
Sleeping
Sleeping
File size: 5,215 Bytes
7dd982b d3a1880 7dd982b 106c061 7dd982b cd6257a 6ac3507 da2d8c5 7dd982b 106c061 7dd982b f06c20a 7dd982b 106c061 7dd982b f06c20a 106c061 2b8e4f0 eec85c6 f06c20a 8692d18 6e4263d d36132c cd6257a 6e4263d cd6257a eefc307 cd6257a eefc307 473c60d 6e4263d cd6257a 473c60d cd6257a eefc307 cd6257a b7fb1f9 473c60d cd6257a eefc307 cd6257a eefc307 473c60d cd6257a 76e3793 6ac3507 eec85c6 106c061 8692d18 2b8e4f0 106c061 2b8e4f0 cd6257a d3a1880 cd6257a d3a1880 729f48e d3a1880 729f48e b82995c 7dd982b eec85c6 106c061 da2d8c5 eefc307 7dd982b 106c061 6e4263d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 |
import gradio as gr
import tempfile, requests, os, subprocess
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chat_models import ChatOpenAI
from gtts import gTTS
from bs4 import BeautifulSoup
from PIL import Image, ImageDraw, ImageFont
import ffmpeg
import textwrap
import random
# OpenAI LLM
llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0.3)
summary_prompt = PromptTemplate.from_template("""
Provide a crisp, promotional-style summary (under 50 words) of the following:
{text}
Summary:
""")
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)
# Extract article content
def extract_main_content(url):
resp = requests.get(url, timeout=10)
soup = BeautifulSoup(resp.content, "html.parser")
for tag in soup(["nav", "header", "footer", "aside", "script", "style", "noscript"]): tag.decompose()
paras = [p.get_text() for p in soup.find_all("p") if len(p.get_text()) > 60]
return "\n".join(paras[:20]) or None
# Convert uploaded PNG logo to local use
def get_uploaded_logo():
from_path = "CSHARP logo.png"
logo_path = tempfile.NamedTemporaryFile(delete=False, suffix=".png").name
with open(from_path, 'rb') as src, open(logo_path, 'wb') as dst:
dst.write(src.read())
return logo_path
# Create image slides from text chunks with pasted emoji icons
emoji_img_path = "/home/user/app/emoji_fire.png" # pre-uploaded emoji icon (e.g., fire)
def create_slides(text, duration, output_folder, max_lines=6):
font_path = "/usr/share/fonts/truetype/dejavu/DejaVuSans.ttf"
font = ImageFont.truetype(font_path, 48)
logo_path = get_uploaded_logo()
chunks = textwrap.wrap(text, width=36)
slides = ["\n".join(chunks[i:i+max_lines]) for i in range(0, len(chunks), max_lines)]
per_slide_time = duration / len(slides)
slide_paths = []
for i, slide_text in enumerate(slides):
img = Image.new("RGB", (1280, 720), color=(20, 30, 60))
draw = ImageDraw.Draw(img)
# Draw text
lines = slide_text.split("\n")
total_height = sum([font.getbbox(line)[3] - font.getbbox(line)[1] for line in lines]) + (len(lines)-1)*20
y = max((720 - total_height) // 2, 20)
emoji_img = Image.open(emoji_img_path).resize((48, 48)).convert("RGBA")
for line in lines:
w = font.getbbox(line)[2] - font.getbbox(line)[0]
text_x = (1280 - w) // 2
draw.text((text_x, y), line, font=font, fill="white")
# Paste emoji left
img.paste(emoji_img, (text_x - 60, y), emoji_img)
# Paste emoji right
img.paste(emoji_img, (text_x + w + 12, y), emoji_img)
y += font.getbbox(line)[3] - font.getbbox(line)[1] + 20
# Paste logo
logo = Image.open(logo_path).convert("RGBA")
logo_width = min(180, int(0.15 * img.width))
logo_height = int(logo.size[1] * (logo_width / logo.size[0]))
logo = logo.resize((logo_width, logo_height))
img.paste(logo, (img.width - logo_width - 30, img.height - logo_height - 30), logo)
frame_path = os.path.join(output_folder, f"slide_{i}.png")
img.save(frame_path)
slide_paths.append((frame_path, per_slide_time))
return slide_paths
# Generate AV summary
def url_to_av_summary(url, duration):
content = extract_main_content(url)
if not content:
return "Failed to extract article content.", None
summary = summary_chain.invoke({"text": content[:3000]})["text"].replace('"','')[:300]
audio_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
gTTS(text=summary).save(audio_path)
frame_dir = tempfile.mkdtemp()
slides = create_slides(summary, duration, frame_dir)
concat_txt_path = os.path.join(frame_dir, "slides.txt")
with open(concat_txt_path, "w") as f:
for path, t in slides:
f.write(f"file '{path}'\n")
f.write(f"duration {t}\n")
f.write(f"file '{slides[-1][0]}'\n")
concat_img = os.path.join(frame_dir, "video_input.mp4")
subprocess.run([
"ffmpeg", "-y", "-f", "concat", "-safe", "0", "-i", concat_txt_path,
"-vsync", "vfr", "-pix_fmt", "yuv420p", concat_img
], stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)
final_video = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name
video_input = ffmpeg.input(concat_img)
audio_input = ffmpeg.input(audio_path)
ffmpeg.output(video_input, audio_input, final_video,
vcodec='libx264', acodec='aac', pix_fmt='yuv420p', shortest=None
).run(overwrite_output=True, quiet=True)
return summary, final_video
iface = gr.Interface(
fn=url_to_av_summary,
inputs=[
gr.Textbox(label="Article URL"),
gr.Radio([5, 10], label="Video Duration (sec)", value=5)
],
outputs=[
gr.Textbox(label="Summary"),
gr.Video(label="Generated AV Summary")
],
title="๐๏ธ AV Summary Generator (Multislide with Logo & Emojis)",
description="Generates a 5/10 sec video summary from article URL with clean text, animated slides, logo, and image-based emojis."
)
if __name__ == '__main__':
iface.launch()
|