File size: 3,234 Bytes
7dd982b
 
 
 
 
 
 
 
 
 
76e3793
 
7dd982b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
76e3793
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dd982b
 
 
 
 
 
 
 
 
 
 
 
76e3793
7dd982b
76e3793
 
 
7dd982b
 
 
 
 
 
 
 
 
 
 
 
 
76e3793
 
7dd982b
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import gradio as gr
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
from langchain.llms import HuggingFacePipeline
from transformers import pipeline
from gtts import gTTS
from bs4 import BeautifulSoup
import tempfile
import os
import requests
from PIL import Image, ImageDraw, ImageFont
import subprocess

# CPU-friendly summarization model
summary_pipe = pipeline("text2text-generation", model="google/flan-t5-base", device=-1)
llm = HuggingFacePipeline(pipeline=summary_pipe)

# LangChain summarization prompt
summary_prompt = PromptTemplate.from_template("""
Summarize the following article content in a clear, concise way:

{text}

Summary:
""")
summary_chain = LLMChain(llm=llm, prompt=summary_prompt)

def extract_main_content(url):
    try:
        response = requests.get(url, timeout=10)
        soup = BeautifulSoup(response.content, "html.parser")
        for tag in soup(["nav", "header", "footer", "aside", "script", "style", "noscript"]):
            tag.decompose()
        paragraphs = soup.find_all("p")
        content = "\n".join([p.get_text() for p in paragraphs if len(p.get_text()) > 60])
        return content.strip()
    except Exception as e:
        return f"Error extracting article content: {str(e)}"

def create_text_image(summary_text, image_path):
    img = Image.new("RGB", (1280, 720), color=(0, 0, 0))
    draw = ImageDraw.Draw(img)
    font = ImageFont.load_default()
    wrapped = summary_text[:1024] + ('...' if len(summary_text) > 1024 else '')
    draw.text((50, 50), wrapped, fill=(255, 255, 255), font=font)
    img.save(image_path)

def generate_video(image_path, audio_path, output_path):
    cmd = [
        "ffmpeg", "-y",
        "-loop", "1",
        "-i", image_path,
        "-i", audio_path,
        "-c:v", "libx264",
        "-tune", "stillimage",
        "-c:a", "aac",
        "-b:a", "192k",
        "-pix_fmt", "yuv420p",
        "-shortest",
        output_path
    ]
    subprocess.run(cmd, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)

def url_to_av_summary(url):
    try:
        article_text = extract_main_content(url)
        if article_text.startswith("Error"):
            return article_text, None

        summary = summary_chain.run(text=article_text)

        tts = gTTS(text=summary)
        audio_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp3").name
        tts.save(audio_path)

        image_path = tempfile.NamedTemporaryFile(delete=False, suffix=".png").name
        video_path = tempfile.NamedTemporaryFile(delete=False, suffix=".mp4").name

        create_text_image(summary, image_path)
        generate_video(image_path, audio_path, video_path)

        return summary, video_path

    except Exception as e:
        return f"Error: {str(e)}", None

iface = gr.Interface(
    fn=url_to_av_summary,
    inputs=gr.Textbox(label="Article URL", placeholder="Paste a news/blog URL here..."),
    outputs=[
        gr.Textbox(label="Summary"),
        gr.Video(label="Video Summary")
    ],
    title="URL to AV Summary Agent (No MoviePy)",
    description="Summarizes only article content from a URL and creates a narrated video using ffmpeg + PIL."
)

if __name__ == "__main__":
    iface.launch()