# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from polygraphy.backend.trt import EngineFromNetwork, TrtRunner from torch import nn import tensorrt_llm from tensorrt_llm import Module, Tensor class TorchMLP(nn.Module): def __init__(self, hidden_size, ffn_hidden_size, bias=True): super().__init__() self.fc = nn.Linear(hidden_size, ffn_hidden_size, bias=bias) self.proj = nn.Linear(ffn_hidden_size, hidden_size, bias=bias) def forward(self, hidden_states): inter = self.fc(hidden_states) inter = nn.functional.relu(inter) output = self.proj(inter) return output, inter class MLP(Module): def __init__(self, hidden_size, ffn_hidden_size, bias=True, tp_group=None, tp_size=1): super().__init__() self.fc = tensorrt_llm.layers.ColumnLinear(hidden_size, ffn_hidden_size, bias=bias, tp_group=tp_group, tp_size=tp_size, gather_output=False) self.proj = tensorrt_llm.layers.RowLinear(ffn_hidden_size, hidden_size, bias=bias, tp_group=tp_group, tp_size=tp_size) def forward(self, hidden_states): inter = self.fc(hidden_states) inter = tensorrt_llm.functional.relu(inter) self.register_network_output('inter', inter) output = self.proj(inter) return output class TestDebuggingAPI(unittest.TestCase): def setUp(self): tensorrt_llm.logger.set_level('error') def test_debugging_api(self): # test data dtype = 'float32' hidden_size = 768 x_data = torch.randn(2, 16, hidden_size) tm = TorchMLP(hidden_size=hidden_size, ffn_hidden_size=hidden_size * 4, bias=False) # construct trt network builder = tensorrt_llm.Builder() net = builder.create_network() with tensorrt_llm.net_guard(net): x = Tensor(name='x', shape=x_data.shape, dtype=tensorrt_llm.str_dtype_to_trt(dtype)) gm = MLP(hidden_size=hidden_size, ffn_hidden_size=4 * hidden_size, bias=False) gm.fc.weight.value = tm.fc.weight.detach().cpu().numpy() gm.proj.weight.value = tm.proj.weight.detach().cpu().numpy() output = gm.forward(x) net._mark_output(output, 'output', tensorrt_llm.str_dtype_to_trt(dtype)) for k, v in gm.named_network_outputs(): net._mark_output(v, k, tensorrt_llm.str_dtype_to_trt(dtype)) # trt run build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) with TrtRunner(build_engine) as runner: outputs = runner.infer(feed_dict={'x': x_data.numpy()}) # pytorch run with torch.no_grad(): ref1, ref2 = tm(x_data) # compare diff np.testing.assert_allclose(ref1.cpu().numpy(), outputs['output'], atol=1e-5) np.testing.assert_allclose(ref2.cpu().numpy(), outputs['inter'], atol=1e-5)