ai-auto-train-deep-learning-multi-dimensional-multi-model-create-Transformational-tools-app
/
test_debugging_api.py
# SPDX-FileCopyrightText: Copyright (c) 2022-2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. | |
# SPDX-License-Identifier: Apache-2.0 | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import unittest | |
import numpy as np | |
import torch | |
from polygraphy.backend.trt import EngineFromNetwork, TrtRunner | |
from torch import nn | |
import tensorrt_llm | |
from tensorrt_llm import Module, Tensor | |
class TorchMLP(nn.Module): | |
def __init__(self, hidden_size, ffn_hidden_size, bias=True): | |
super().__init__() | |
self.fc = nn.Linear(hidden_size, ffn_hidden_size, bias=bias) | |
self.proj = nn.Linear(ffn_hidden_size, hidden_size, bias=bias) | |
def forward(self, hidden_states): | |
inter = self.fc(hidden_states) | |
inter = nn.functional.relu(inter) | |
output = self.proj(inter) | |
return output, inter | |
class MLP(Module): | |
def __init__(self, | |
hidden_size, | |
ffn_hidden_size, | |
bias=True, | |
tp_group=None, | |
tp_size=1): | |
super().__init__() | |
self.fc = tensorrt_llm.layers.ColumnLinear(hidden_size, | |
ffn_hidden_size, | |
bias=bias, | |
tp_group=tp_group, | |
tp_size=tp_size, | |
gather_output=False) | |
self.proj = tensorrt_llm.layers.RowLinear(ffn_hidden_size, | |
hidden_size, | |
bias=bias, | |
tp_group=tp_group, | |
tp_size=tp_size) | |
def forward(self, hidden_states): | |
inter = self.fc(hidden_states) | |
inter = tensorrt_llm.functional.relu(inter) | |
self.register_network_output('inter', inter) | |
output = self.proj(inter) | |
return output | |
class TestDebuggingAPI(unittest.TestCase): | |
def setUp(self): | |
tensorrt_llm.logger.set_level('error') | |
def test_debugging_api(self): | |
# test data | |
dtype = 'float32' | |
hidden_size = 768 | |
x_data = torch.randn(2, 16, hidden_size) | |
tm = TorchMLP(hidden_size=hidden_size, | |
ffn_hidden_size=hidden_size * 4, | |
bias=False) | |
# construct trt network | |
builder = tensorrt_llm.Builder() | |
net = builder.create_network() | |
with tensorrt_llm.net_guard(net): | |
x = Tensor(name='x', | |
shape=x_data.shape, | |
dtype=tensorrt_llm.str_dtype_to_trt(dtype)) | |
gm = MLP(hidden_size=hidden_size, | |
ffn_hidden_size=4 * hidden_size, | |
bias=False) | |
gm.fc.weight.value = tm.fc.weight.detach().cpu().numpy() | |
gm.proj.weight.value = tm.proj.weight.detach().cpu().numpy() | |
output = gm.forward(x) | |
net._mark_output(output, 'output', | |
tensorrt_llm.str_dtype_to_trt(dtype)) | |
for k, v in gm.named_network_outputs(): | |
net._mark_output(v, k, tensorrt_llm.str_dtype_to_trt(dtype)) | |
# trt run | |
build_engine = EngineFromNetwork((builder.trt_builder, net.trt_network)) | |
with TrtRunner(build_engine) as runner: | |
outputs = runner.infer(feed_dict={'x': x_data.numpy()}) | |
# pytorch run | |
with torch.no_grad(): | |
ref1, ref2 = tm(x_data) | |
# compare diff | |
np.testing.assert_allclose(ref1.cpu().numpy(), | |
outputs['output'], | |
atol=1e-5) | |
np.testing.assert_allclose(ref2.cpu().numpy(), | |
outputs['inter'], | |
atol=1e-5) | |