Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import gradio as gr
|
2 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
3 |
|
@@ -18,3 +19,32 @@ iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Tex
|
|
18 |
|
19 |
# Launch the Gradio interface
|
20 |
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
import gradio as gr
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
|
|
|
19 |
|
20 |
# Launch the Gradio interface
|
21 |
iface.launch()
|
22 |
+
"""
|
23 |
+
|
24 |
+
import gradio as gr
|
25 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
26 |
+
import torch
|
27 |
+
|
28 |
+
# Load your fine-tuned model and tokenizer
|
29 |
+
model_name = "crystal99/my-fine-tuned-model"
|
30 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
32 |
+
|
33 |
+
# Move model to GPU if available and enable fp16 for faster inference
|
34 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
35 |
+
model.to(device)
|
36 |
+
|
37 |
+
# Define the text generation function
|
38 |
+
def generate_text(prompt):
|
39 |
+
# Prevent gradient calculation to speed up inference
|
40 |
+
with torch.no_grad():
|
41 |
+
inputs = tokenizer(prompt, return_tensors="pt").to(device)
|
42 |
+
outputs = model.generate(inputs['input_ids'], max_length=100, num_return_sequences=1, do_sample=False)
|
43 |
+
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
44 |
+
return generated_text
|
45 |
+
|
46 |
+
# Set up the Gradio interface
|
47 |
+
iface = gr.Interface(fn=generate_text, inputs="text", outputs="text", title="Text Generator using Fine-Tuned Model")
|
48 |
+
|
49 |
+
# Launch the Gradio interface
|
50 |
+
iface.launch()
|