from .vers import calc_vers import librosa import numpy as np import math from .filler_analyzer import detect_fillers from .find_valence import get_valence_score from filler_count.filler_score import analyze_fillers import pyworld def compute_vers_score(file_path: str, whisper_model, filler_count = None) -> dict: """ Compute VERS (Vocal Emotional Regulation Score) and its components from a speech sample. """ result = whisper_model.transcribe(file_path, word_timestamps=False, fp16=False) transcript = result.get("text", "").strip() segments = result.get("segments", []) if filler_count is None: # Filler count result = analyze_fillers(file_path,'base', transcript) filler_count = result.get("filler_count", 0) # Load audio y, sr = librosa.load(file_path, sr=None) duration = len(y) / sr if sr else 0.0 # Volume (RMS) rms = librosa.feature.rms(y=y)[0] mean_rms = float(np.mean(rms)) mean_volume_db = 20 * math.log10(mean_rms + 1e-6) if mean_rms > 0 else -80.0 volume_std = np.std(20 * np.log10(rms + 1e-6)) # Max volume vol_max = np.max(np.abs(y)) if y.size > 0 else 0.0 vol_max_db = 20 * math.log10(vol_max + 1e-6) if vol_max > 0 else -80.0 # Calculate pitch variation (in semitones) using pyworld _f0, t = pyworld.harvest(y.astype(np.float64), sr, f0_floor=80.0, f0_ceil=400.0, frame_period=1000 * 256 / sr) f0 = pyworld.stonemask(y.astype(np.float64), _f0, t, sr) voiced_f0 = f0[f0 > 0] voiced_f0 = voiced_f0[ (voiced_f0 > np.percentile(voiced_f0, 5)) & (voiced_f0 < np.percentile(voiced_f0, 95)) ] pitch_variation = 0.0 if voiced_f0.size > 0: median_f0 = np.median(voiced_f0) median_f0 = max(median_f0, 1e-6) semitone_diffs = 12 * np.log2(voiced_f0 / median_f0) pitch_variation = float(np.std(semitone_diffs)) # Pause analysis total_speaking_time = 0.0 long_pause_count = 0 if segments: for seg in segments: total_speaking_time += (seg["end"] - seg["start"]) for i in range(len(segments) - 1): pause_dur = segments[i+1]["start"] - segments[i]["end"] if pause_dur > 1.0: long_pause_count += 1 first_start = segments[0]["start"] last_end = segments[-1]["end"] if first_start > 1.0: long_pause_count += 1 if duration - last_end > 1.0: long_pause_count += 1 # WPM words = transcript.split() word_count = len(words) words_per_min = (word_count / duration) * 60.0 if duration > 0 else 0.0 valence_scores = get_valence_score(file_path) # Calculate VERS vers_result = calc_vers( filler_count=filler_count, long_pause_count=long_pause_count, pitch_variation=pitch_variation, mean_volume_db=mean_volume_db, vol_max_db=vol_max_db, wpm=words_per_min, volume_std=volume_std, valence_scores=valence_scores ) return vers_result