add filler
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import shutil
|
|
7 |
import uuid
|
8 |
|
9 |
# Ensure sibling module fluency is discoverable
|
10 |
-
#sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__))))
|
11 |
|
12 |
from fluency.fluency_api import main as analyze_fluency_main
|
13 |
from tone_modulation.tone_api import main as analyze_tone_main
|
@@ -19,26 +19,6 @@ from ves.ves import calc_voice_engagement_score
|
|
19 |
from transcribe import transcribe_audio
|
20 |
from filler_count.filler_score import analyze_fillers
|
21 |
|
22 |
-
import logging
|
23 |
-
|
24 |
-
# Configure logging
|
25 |
-
logging.basicConfig(
|
26 |
-
level=logging.INFO, # Or DEBUG for more verbose logs
|
27 |
-
format="%(asctime)s - %(levelname)s - %(message)s",
|
28 |
-
handlers=[
|
29 |
-
logging.StreamHandler(sys.stdout)
|
30 |
-
]
|
31 |
-
)
|
32 |
-
|
33 |
-
logger = logging.getLogger(__name__)
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
app = FastAPI()
|
43 |
|
44 |
app.add_middleware(
|
@@ -49,47 +29,6 @@ app.add_middleware(
|
|
49 |
allow_headers=["*"],
|
50 |
)
|
51 |
|
52 |
-
@app.get("/")
|
53 |
-
def home():
|
54 |
-
return {"status": "Running"}
|
55 |
-
|
56 |
-
@app.get("/health")
|
57 |
-
def health_check():
|
58 |
-
return {"status": "ok"}
|
59 |
-
|
60 |
-
|
61 |
-
# this will just rturen that audio file is being ready for analysis
|
62 |
-
@app.post("/audio_status/")
|
63 |
-
async def audio_status(file: UploadFile):
|
64 |
-
"""
|
65 |
-
Endpoint to check the status of an uploaded audio file (.wav or .mp3).
|
66 |
-
"""
|
67 |
-
if not file.filename.endswith(('.wav', '.mp3')):
|
68 |
-
raise HTTPException(status_code=400, detail="Invalid file type. Only .wav and .mp3 files are supported.")
|
69 |
-
|
70 |
-
# Generate a safe temporary file path
|
71 |
-
temp_filename = f"temp_{uuid.uuid4()}{os.path.splitext(file.filename)[1]}"
|
72 |
-
temp_dir = "temp_uploads"
|
73 |
-
temp_filepath = os.path.join(temp_dir, temp_filename)
|
74 |
-
os.makedirs(temp_dir, exist_ok=True)
|
75 |
-
|
76 |
-
try:
|
77 |
-
# Save uploaded file
|
78 |
-
with open(temp_filepath, "wb") as buffer:
|
79 |
-
shutil.copyfileobj(file.file, buffer)
|
80 |
-
|
81 |
-
return JSONResponse(content={"status": "File is ready for analysis"})
|
82 |
-
|
83 |
-
except Exception as e:
|
84 |
-
raise HTTPException(status_code=500, detail=f"File status check failed: {str(e)}")
|
85 |
-
|
86 |
-
finally:
|
87 |
-
# Clean up temporary file
|
88 |
-
if os.path.exists(temp_filepath):
|
89 |
-
os.remove(temp_filepath)
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
@app.post("/analyze_fluency/")
|
94 |
async def analyze_fluency(file: UploadFile):
|
95 |
# idk if we can use pydantic model here If we need I can add later
|
@@ -120,74 +59,38 @@ async def analyze_fluency(file: UploadFile):
|
|
120 |
if os.path.exists(temp_filepath):
|
121 |
os.remove(temp_filepath)
|
122 |
|
123 |
-
# @app.post('/analyze_tone/')
|
124 |
-
# async def analyze_tone(file: UploadFile):
|
125 |
-
# """
|
126 |
-
# Endpoint to analyze tone of an uploaded audio file (.wav or .mp3).
|
127 |
-
# """
|
128 |
-
# if not file.filename.endswith(('.wav', '.mp3')):
|
129 |
-
# raise HTTPException(status_code=400, detail="Invalid file type. Only .wav and .mp3 files are supported.")
|
130 |
-
|
131 |
-
# # Generate a safe temporary file path
|
132 |
-
# temp_filename = f"temp_{uuid.uuid4()}{os.path.splitext(file.filename)[1]}"
|
133 |
-
# temp_dir = "temp_uploads"
|
134 |
-
# temp_filepath = os.path.join(temp_dir, temp_filename)
|
135 |
-
# os.makedirs(temp_dir, exist_ok=True)
|
136 |
-
|
137 |
-
# try:
|
138 |
-
# # Save uploaded file
|
139 |
-
# with open(temp_filepath, "wb") as buffer:
|
140 |
-
# shutil.copyfileobj(file.file, buffer)
|
141 |
-
|
142 |
-
# # Analyze tone using your custom function
|
143 |
-
# result = analyze_tone_main(temp_filepath)
|
144 |
-
|
145 |
-
# return JSONResponse(content=result)
|
146 |
-
|
147 |
-
# except Exception as e:
|
148 |
-
# raise HTTPException(status_code=500, detail=f"Tone analysis failed: {str(e)}")
|
149 |
-
|
150 |
-
# finally:
|
151 |
-
# # Clean up temporary file
|
152 |
-
# if os.path.exists(temp_filepath):
|
153 |
-
# os.remove(temp_filepath)
|
154 |
-
|
155 |
@app.post('/analyze_tone/')
|
156 |
async def analyze_tone(file: UploadFile):
|
157 |
-
|
158 |
-
|
|
|
159 |
if not file.filename.endswith(('.wav', '.mp3')):
|
160 |
-
logger.warning("Invalid file type received")
|
161 |
raise HTTPException(status_code=400, detail="Invalid file type. Only .wav and .mp3 files are supported.")
|
162 |
|
|
|
163 |
temp_filename = f"temp_{uuid.uuid4()}{os.path.splitext(file.filename)[1]}"
|
164 |
temp_dir = "temp_uploads"
|
165 |
temp_filepath = os.path.join(temp_dir, temp_filename)
|
166 |
os.makedirs(temp_dir, exist_ok=True)
|
167 |
|
168 |
try:
|
169 |
-
|
170 |
with open(temp_filepath, "wb") as buffer:
|
171 |
shutil.copyfileobj(file.file, buffer)
|
172 |
|
173 |
-
|
174 |
result = analyze_tone_main(temp_filepath)
|
175 |
-
logger.info("Tone analysis completed successfully")
|
176 |
|
177 |
return JSONResponse(content=result)
|
178 |
|
179 |
except Exception as e:
|
180 |
-
logger.error(f"Tone analysis failed: {str(e)}", exc_info=True)
|
181 |
raise HTTPException(status_code=500, detail=f"Tone analysis failed: {str(e)}")
|
182 |
|
183 |
finally:
|
|
|
184 |
if os.path.exists(temp_filepath):
|
185 |
-
logger.info(f"Cleaning up temporary file: {temp_filepath}")
|
186 |
os.remove(temp_filepath)
|
187 |
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
@app.post('/analyze_vcs/')
|
192 |
async def analyze_vcs(file: UploadFile):
|
193 |
"""
|
@@ -454,6 +357,7 @@ async def analyze_all(file: UploadFile):
|
|
454 |
voice_confidence_result = analyze_voice_confidence_main(temp_filepath)
|
455 |
vps_result = analyze_vps_main(temp_filepath)
|
456 |
ves_result = calc_voice_engagement_score(temp_filepath)
|
|
|
457 |
transcript = transcribe_audio(temp_filepath)
|
458 |
|
459 |
# Combine results into a single response
|
@@ -465,6 +369,7 @@ async def analyze_all(file: UploadFile):
|
|
465 |
"voice_confidence": voice_confidence_result,
|
466 |
"vps": vps_result,
|
467 |
"ves": ves_result,
|
|
|
468 |
"transcript": transcript
|
469 |
}
|
470 |
|
@@ -477,7 +382,3 @@ async def analyze_all(file: UploadFile):
|
|
477 |
# Clean up temporary file
|
478 |
if os.path.exists(temp_filepath):
|
479 |
os.remove(temp_filepath)
|
480 |
-
|
481 |
-
# if __name__ == "__main__":
|
482 |
-
# import uvicorn
|
483 |
-
# uvicorn.run("main:app", host="0.0.0.0", port=int(os.environ.get("PORT", 10000)), reload=False)
|
|
|
7 |
import uuid
|
8 |
|
9 |
# Ensure sibling module fluency is discoverable
|
10 |
+
#sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
11 |
|
12 |
from fluency.fluency_api import main as analyze_fluency_main
|
13 |
from tone_modulation.tone_api import main as analyze_tone_main
|
|
|
19 |
from transcribe import transcribe_audio
|
20 |
from filler_count.filler_score import analyze_fillers
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
app = FastAPI()
|
23 |
|
24 |
app.add_middleware(
|
|
|
29 |
allow_headers=["*"],
|
30 |
)
|
31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
@app.post("/analyze_fluency/")
|
33 |
async def analyze_fluency(file: UploadFile):
|
34 |
# idk if we can use pydantic model here If we need I can add later
|
|
|
59 |
if os.path.exists(temp_filepath):
|
60 |
os.remove(temp_filepath)
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
@app.post('/analyze_tone/')
|
63 |
async def analyze_tone(file: UploadFile):
|
64 |
+
"""
|
65 |
+
Endpoint to analyze tone of an uploaded audio file (.wav or .mp3).
|
66 |
+
"""
|
67 |
if not file.filename.endswith(('.wav', '.mp3')):
|
|
|
68 |
raise HTTPException(status_code=400, detail="Invalid file type. Only .wav and .mp3 files are supported.")
|
69 |
|
70 |
+
# Generate a safe temporary file path
|
71 |
temp_filename = f"temp_{uuid.uuid4()}{os.path.splitext(file.filename)[1]}"
|
72 |
temp_dir = "temp_uploads"
|
73 |
temp_filepath = os.path.join(temp_dir, temp_filename)
|
74 |
os.makedirs(temp_dir, exist_ok=True)
|
75 |
|
76 |
try:
|
77 |
+
# Save uploaded file
|
78 |
with open(temp_filepath, "wb") as buffer:
|
79 |
shutil.copyfileobj(file.file, buffer)
|
80 |
|
81 |
+
# Analyze tone using your custom function
|
82 |
result = analyze_tone_main(temp_filepath)
|
|
|
83 |
|
84 |
return JSONResponse(content=result)
|
85 |
|
86 |
except Exception as e:
|
|
|
87 |
raise HTTPException(status_code=500, detail=f"Tone analysis failed: {str(e)}")
|
88 |
|
89 |
finally:
|
90 |
+
# Clean up temporary file
|
91 |
if os.path.exists(temp_filepath):
|
|
|
92 |
os.remove(temp_filepath)
|
93 |
|
|
|
|
|
|
|
94 |
@app.post('/analyze_vcs/')
|
95 |
async def analyze_vcs(file: UploadFile):
|
96 |
"""
|
|
|
357 |
voice_confidence_result = analyze_voice_confidence_main(temp_filepath)
|
358 |
vps_result = analyze_vps_main(temp_filepath)
|
359 |
ves_result = calc_voice_engagement_score(temp_filepath)
|
360 |
+
filler_count = analyze_fillers(temp_filepath) # Assuming this function returns a dict with filler count
|
361 |
transcript = transcribe_audio(temp_filepath)
|
362 |
|
363 |
# Combine results into a single response
|
|
|
369 |
"voice_confidence": voice_confidence_result,
|
370 |
"vps": vps_result,
|
371 |
"ves": ves_result,
|
372 |
+
"filler_words": filler_count,
|
373 |
"transcript": transcript
|
374 |
}
|
375 |
|
|
|
382 |
# Clean up temporary file
|
383 |
if os.path.exists(temp_filepath):
|
384 |
os.remove(temp_filepath)
|
|
|
|
|
|
|
|