API optimizations
Browse files- app.py +153 -329
- filler_count/__pycache__/filler_score.cpython-312.pyc +0 -0
- filler_count/filler_score.py +6 -5
- fluency/__pycache__/compute_fluency.cpython-312.pyc +0 -0
- fluency/__pycache__/fluency_api.cpython-312.pyc +0 -0
- fluency/compute_fluency.py +28 -24
- fluency/fluency_api.py +2 -2
- vcs/__pycache__/compute_vcs.cpython-312.pyc +0 -0
- vcs/compute_vcs.py +1 -47
- vers/__pycache__/compute_vers_score.cpython-312.pyc +0 -0
- vers/__pycache__/vers.cpython-312.pyc +0 -0
- vers/__pycache__/vers_api.cpython-312.pyc +0 -0
- vers/compute_vers_score.py +17 -9
- vers/vers.py +6 -6
- vers/vers_api.py +2 -2
- voice_confidence_score/__pycache__/voice_confidence.cpython-312.pyc +0 -0
- voice_confidence_score/__pycache__/voice_confidence_api.cpython-312.pyc +0 -0
- voice_confidence_score/voice_confidence.py +7 -4
- voice_confidence_score/voice_confidence_api.py +2 -2
- vps/__pycache__/compute_vps_score.cpython-312.pyc +0 -0
- vps/__pycache__/vps.cpython-312.pyc +0 -0
- vps/__pycache__/vps_api.cpython-312.pyc +0 -0
- vps/compute_vps_score.py +16 -11
app.py
CHANGED
@@ -1,14 +1,15 @@
|
|
1 |
-
from fastapi import FastAPI, UploadFile, File,
|
2 |
from fastapi.responses import JSONResponse
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
4 |
-
import sys
|
5 |
import os
|
6 |
import shutil
|
7 |
import uuid
|
|
|
|
|
|
|
|
|
8 |
|
9 |
-
#
|
10 |
-
#sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), '..')))
|
11 |
-
|
12 |
from fluency.fluency_api import main as analyze_fluency_main
|
13 |
from tone_modulation.tone_api import main as analyze_tone_main
|
14 |
from vcs.vcs_api import main as analyze_vcs_main
|
@@ -18,375 +19,198 @@ from vps.vps_api import main as analyze_vps_main
|
|
18 |
from ves.ves import calc_voice_engagement_score
|
19 |
from transcribe import transcribe_audio
|
20 |
from filler_count.filler_score import analyze_fillers
|
21 |
-
|
22 |
|
23 |
app = FastAPI()
|
24 |
|
25 |
app.add_middleware(
|
26 |
CORSMiddleware,
|
27 |
-
allow_origins=["*"], #
|
28 |
allow_credentials=True,
|
29 |
allow_methods=["*"],
|
30 |
allow_headers=["*"],
|
31 |
)
|
32 |
|
33 |
-
|
34 |
-
async def analyze_fluency(file: UploadFile):
|
35 |
-
# idk if we can use pydantic model here If we need I can add later
|
36 |
-
if not file.filename.endswith(('.wav', '.mp3','.m4a','.mp4','.flac')):
|
37 |
-
raise HTTPException(status_code=400, detail="Invalid file type. Only .wav and .mp3 files are supported.")
|
38 |
-
|
39 |
-
# Generate a safe temporary file path for temporary storage of the uploaded file this will be deleted after processing
|
40 |
-
temp_filename = f"temp_{uuid.uuid4()}{os.path.splitext(file.filename)[1]}"
|
41 |
-
temp_dir = "temp_uploads"
|
42 |
-
temp_filepath = os.path.join(temp_dir, temp_filename)
|
43 |
-
os.makedirs(temp_dir, exist_ok=True)
|
44 |
-
|
45 |
-
try:
|
46 |
-
# Save uploaded file
|
47 |
-
with open(temp_filepath, "wb") as buffer:
|
48 |
-
shutil.copyfileobj(file.file, buffer)
|
49 |
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
return JSONResponse(content=result)
|
54 |
-
|
55 |
-
except Exception as e:
|
56 |
-
raise HTTPException(status_code=500, detail=f"Fluency analysis failed: {str(e)}")
|
57 |
-
|
58 |
-
finally:
|
59 |
-
# Clean up temporary file
|
60 |
-
if os.path.exists(temp_filepath):
|
61 |
-
os.remove(temp_filepath)
|
62 |
-
|
63 |
-
@app.post('/analyze_tone/')
|
64 |
-
async def analyze_tone(file: UploadFile):
|
65 |
-
"""
|
66 |
-
Endpoint to analyze tone of an uploaded audio file (.wav or .mp3).
|
67 |
-
"""
|
68 |
-
if not file.filename.endswith(('.wav', '.mp3','.m4a','.mp4','.flac')):
|
69 |
-
raise HTTPException(status_code=400, detail="Invalid file type. Only .wav and .mp3 files are supported.")
|
70 |
-
|
71 |
-
# Generate a safe temporary file path
|
72 |
-
temp_filename = f"temp_{uuid.uuid4()}{os.path.splitext(file.filename)[1]}"
|
73 |
temp_dir = "temp_uploads"
|
74 |
-
temp_filepath = os.path.join(temp_dir, temp_filename)
|
75 |
os.makedirs(temp_dir, exist_ok=True)
|
76 |
-
|
|
|
|
|
77 |
try:
|
78 |
-
# Save uploaded file
|
79 |
with open(temp_filepath, "wb") as buffer:
|
80 |
-
shutil.copyfileobj(
|
81 |
-
|
82 |
-
# Analyze tone using your custom function
|
83 |
-
result = analyze_tone_main(temp_filepath)
|
84 |
-
|
85 |
-
return JSONResponse(content=result)
|
86 |
-
|
87 |
-
except Exception as e:
|
88 |
-
raise HTTPException(status_code=500, detail=f"Tone analysis failed: {str(e)}")
|
89 |
-
|
90 |
finally:
|
91 |
-
# Clean up temporary file
|
92 |
if os.path.exists(temp_filepath):
|
93 |
os.remove(temp_filepath)
|
94 |
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
try:
|
110 |
-
# Save uploaded file
|
111 |
-
with open(temp_filepath, "wb") as buffer:
|
112 |
-
shutil.copyfileobj(file.file, buffer)
|
113 |
-
|
114 |
-
# Analyze voice clarity using your custom function
|
115 |
-
result = analyze_vcs_main(temp_filepath)
|
116 |
|
117 |
-
|
|
|
|
|
118 |
|
119 |
-
|
120 |
-
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
os.remove(temp_filepath)
|
126 |
|
127 |
@app.post('/analyze_vers/')
|
128 |
async def analyze_vers(file: UploadFile):
|
129 |
-
|
130 |
-
Endpoint to analyze VERS of an uploaded audio file (.wav or .mp3).
|
131 |
-
"""
|
132 |
-
if not file.filename.endswith(('.wav', '.mp3','.m4a','.mp4','.flac')):
|
133 |
-
raise HTTPException(status_code=400, detail="Invalid file type. Only .wav and .mp3 files are supported.")
|
134 |
-
|
135 |
-
# Generate a safe temporary file path
|
136 |
-
temp_filename = f"temp_{uuid.uuid4()}{os.path.splitext(file.filename)[1]}"
|
137 |
-
temp_dir = "temp_uploads"
|
138 |
-
temp_filepath = os.path.join(temp_dir, temp_filename)
|
139 |
-
os.makedirs(temp_dir, exist_ok=True)
|
140 |
|
141 |
-
try:
|
142 |
-
# Save uploaded file
|
143 |
-
with open(temp_filepath, "wb") as buffer:
|
144 |
-
shutil.copyfileobj(file.file, buffer)
|
145 |
-
|
146 |
-
# Analyze VERS using your custom function
|
147 |
-
result = analyze_vers_main(temp_filepath)
|
148 |
-
|
149 |
-
return JSONResponse(content=result)
|
150 |
-
|
151 |
-
except Exception as e:
|
152 |
-
raise HTTPException(status_code=500, detail=f"VERS analysis failed: {str(e)}")
|
153 |
-
|
154 |
-
finally:
|
155 |
-
# Clean up temporary file
|
156 |
-
if os.path.exists(temp_filepath):
|
157 |
-
os.remove(temp_filepath)
|
158 |
-
|
159 |
@app.post('/voice_confidence/')
|
160 |
async def analyze_voice_confidence(file: UploadFile):
|
161 |
-
|
162 |
-
Endpoint to analyze voice confidence of an uploaded audio file (.wav or .mp3).
|
163 |
-
"""
|
164 |
-
if not file.filename.endswith(('.wav', '.mp3','.m4a','.mp4','.flac')):
|
165 |
-
raise HTTPException(status_code=400, detail="Invalid file type. Only .wav and .mp3 files are supported.")
|
166 |
-
|
167 |
-
# Generate a safe temporary file path
|
168 |
-
temp_filename = f"temp_{uuid.uuid4()}{os.path.splitext(file.filename)[1]}"
|
169 |
-
temp_dir = "temp_uploads"
|
170 |
-
temp_filepath = os.path.join(temp_dir, temp_filename)
|
171 |
-
os.makedirs(temp_dir, exist_ok=True)
|
172 |
-
|
173 |
-
try:
|
174 |
-
# Save uploaded file
|
175 |
-
with open(temp_filepath, "wb") as buffer:
|
176 |
-
shutil.copyfileobj(file.file, buffer)
|
177 |
-
|
178 |
-
# Analyze voice confidence using your custom function
|
179 |
-
result = analyze_voice_confidence_main(temp_filepath)
|
180 |
-
|
181 |
-
return JSONResponse(content=result)
|
182 |
-
|
183 |
-
except Exception as e:
|
184 |
-
raise HTTPException(status_code=500, detail=f"Voice confidence analysis failed: {str(e)}")
|
185 |
-
|
186 |
-
finally:
|
187 |
-
# Clean up temporary file
|
188 |
-
if os.path.exists(temp_filepath):
|
189 |
-
os.remove(temp_filepath)
|
190 |
|
191 |
@app.post('/analyze_vps/')
|
192 |
async def analyze_vps(file: UploadFile):
|
193 |
-
|
194 |
-
Endpoint to analyze voice pacing score of an uploaded audio file (.wav or .mp3).
|
195 |
-
"""
|
196 |
-
if not file.filename.endswith(('.wav', '.mp3','.m4a','.mp4','.flac')):
|
197 |
-
raise HTTPException(status_code=400, detail="Invalid file type. Only .wav and .mp3 files are supported.")
|
198 |
-
|
199 |
-
# Generate a safe temporary file path
|
200 |
-
temp_filename = f"temp_{uuid.uuid4()}{os.path.splitext(file.filename)[1]}"
|
201 |
-
temp_dir = "temp_uploads"
|
202 |
-
temp_filepath = os.path.join(temp_dir, temp_filename)
|
203 |
-
os.makedirs(temp_dir, exist_ok=True)
|
204 |
-
|
205 |
-
try:
|
206 |
-
# Save uploaded file
|
207 |
-
with open(temp_filepath, "wb") as buffer:
|
208 |
-
shutil.copyfileobj(file.file, buffer)
|
209 |
-
|
210 |
-
# Analyze voice pacing score using your custom function
|
211 |
-
result = analyze_vps_main(temp_filepath)
|
212 |
-
|
213 |
-
return JSONResponse(content=result)
|
214 |
-
|
215 |
-
except Exception as e:
|
216 |
-
raise HTTPException(status_code=500, detail=f"Voice pacing score analysis failed: {str(e)}")
|
217 |
-
|
218 |
-
finally:
|
219 |
-
# Clean up temporary file
|
220 |
-
if os.path.exists(temp_filepath):
|
221 |
-
os.remove(temp_filepath)
|
222 |
|
223 |
@app.post('/voice_engagement_score/')
|
224 |
async def analyze_voice_engagement_score(file: UploadFile):
|
225 |
-
|
226 |
-
Endpoint to analyze voice engagement score of an uploaded audio file (.wav or .mp3).
|
227 |
-
"""
|
228 |
-
if not file.filename.endswith(('.wav', '.mp3','.m4a','.mp4','.flac')):
|
229 |
-
raise HTTPException(status_code=400, detail="Invalid file type. Only .wav and .mp3 files are supported.")
|
230 |
-
|
231 |
-
# Generate a safe temporary file path
|
232 |
-
temp_filename = f"temp_{uuid.uuid4()}{os.path.splitext(file.filename)[1]}"
|
233 |
-
temp_dir = "temp_uploads"
|
234 |
-
temp_filepath = os.path.join(temp_dir, temp_filename)
|
235 |
-
os.makedirs(temp_dir, exist_ok=True)
|
236 |
-
|
237 |
-
try:
|
238 |
-
# Save uploaded file
|
239 |
-
with open(temp_filepath, "wb") as buffer:
|
240 |
-
shutil.copyfileobj(file.file, buffer)
|
241 |
-
|
242 |
-
# Analyze voice engagement score using your custom function
|
243 |
-
result = calc_voice_engagement_score(temp_filepath)
|
244 |
-
|
245 |
-
return JSONResponse(content=result)
|
246 |
-
|
247 |
-
except Exception as e:
|
248 |
-
raise HTTPException(status_code=500, detail=f"Voice engagement score analysis failed: {str(e)}")
|
249 |
-
|
250 |
-
finally:
|
251 |
-
# Clean up temporary file
|
252 |
-
if os.path.exists(temp_filepath):
|
253 |
-
os.remove(temp_filepath)
|
254 |
|
255 |
@app.post('/analyze_fillers/')
|
256 |
async def analyze_fillers_count(file: UploadFile):
|
257 |
-
|
258 |
-
Endpoint to analyze filler words in an uploaded audio file (.wav or .mp3).
|
259 |
-
"""
|
260 |
-
if not file.filename.endswith(('.wav', '.mp3','.mp4','.m4a','.flac')):
|
261 |
-
raise HTTPException(status_code=400, detail="Invalid file type. Only .wav and .mp3 files are supported.")
|
262 |
-
|
263 |
-
# Generate a safe temporary file path
|
264 |
-
temp_filename = f"temp_{uuid.uuid4()}{os.path.splitext(file.filename)[1]}"
|
265 |
-
temp_dir = "temp_uploads"
|
266 |
-
temp_filepath = os.path.join(temp_dir, temp_filename)
|
267 |
-
os.makedirs(temp_dir, exist_ok=True)
|
268 |
-
|
269 |
-
try:
|
270 |
-
# Save uploaded file
|
271 |
-
with open(temp_filepath, "wb") as buffer:
|
272 |
-
shutil.copyfileobj(file.file, buffer)
|
273 |
-
|
274 |
-
# Call the analysis function with the file path
|
275 |
-
result = analyze_fillers(temp_filepath) # Pass the file path, not the UploadFile object
|
276 |
-
|
277 |
-
return JSONResponse(content=result)
|
278 |
-
|
279 |
-
except Exception as e:
|
280 |
-
raise HTTPException(status_code=500, detail=f"Filler analysis failed: {str(e)}")
|
281 |
-
|
282 |
-
finally:
|
283 |
-
# Clean up temporary file
|
284 |
-
if os.path.exists(temp_filepath):
|
285 |
-
os.remove(temp_filepath)
|
286 |
-
|
287 |
-
|
288 |
-
import time
|
289 |
-
|
290 |
-
|
291 |
|
292 |
@app.post('/transcribe/')
|
293 |
async def transcribe(file: UploadFile):
|
294 |
-
|
295 |
-
Endpoint to transcribe an uploaded audio file ('.wav', '.mp3','mp4','.m4a','.flac' ).
|
296 |
-
"""
|
297 |
-
#calculate time to transcribe
|
298 |
-
start_time = time.time()
|
299 |
-
if not file.filename.endswith(('.wav', '.mp3','mp4','.m4a','.flac')):
|
300 |
-
raise HTTPException(status_code=400, detail="Invalid file type. Only .wav ,mp4 and .mp3 files are supported.")
|
301 |
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
end_time = time.time()
|
316 |
-
transcription_time = end_time - start_time
|
317 |
-
response = {
|
318 |
-
"transcription": result,
|
319 |
-
"transcription_time": transcription_time
|
320 |
-
}
|
321 |
-
|
322 |
-
return JSONResponse(content=response)
|
323 |
-
|
324 |
-
except Exception as e:
|
325 |
-
raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}")
|
326 |
-
|
327 |
-
finally:
|
328 |
-
# Clean up temporary file
|
329 |
-
if os.path.exists(temp_filepath):
|
330 |
-
os.remove(temp_filepath)
|
331 |
-
|
332 |
-
import datetime
|
333 |
|
334 |
@app.post('/analyze_all/')
|
335 |
async def analyze_all(file: UploadFile):
|
336 |
-
"""
|
337 |
-
Endpoint to analyze all aspects of an uploaded audio file (.wav or .mp3).
|
338 |
-
"""
|
339 |
print(f"Received request at {datetime.datetime.now()} for file: {file.filename}")
|
340 |
-
|
341 |
-
raise HTTPException(status_code=400, detail="Invalid file type. Only .wav and .mp3 files are supported.")
|
342 |
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
-
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
-
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
"
|
373 |
-
|
374 |
-
|
375 |
-
"
|
376 |
-
|
377 |
-
"
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
"
|
382 |
-
}
|
383 |
-
|
384 |
-
return JSONResponse(content=combined_result)
|
385 |
-
|
386 |
-
except Exception as e:
|
387 |
-
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
|
388 |
|
389 |
-
|
390 |
-
|
391 |
-
|
392 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
2 |
from fastapi.responses import JSONResponse
|
3 |
from fastapi.middleware.cors import CORSMiddleware
|
|
|
4 |
import os
|
5 |
import shutil
|
6 |
import uuid
|
7 |
+
import tempfile
|
8 |
+
import datetime
|
9 |
+
import time
|
10 |
+
from contextlib import contextmanager
|
11 |
|
12 |
+
# Import analysis functions (assumed to be modified to accept transcript)
|
|
|
|
|
13 |
from fluency.fluency_api import main as analyze_fluency_main
|
14 |
from tone_modulation.tone_api import main as analyze_tone_main
|
15 |
from vcs.vcs_api import main as analyze_vcs_main
|
|
|
19 |
from ves.ves import calc_voice_engagement_score
|
20 |
from transcribe import transcribe_audio
|
21 |
from filler_count.filler_score import analyze_fillers
|
22 |
+
from emotion.emo_predict import predict_emotion
|
23 |
|
24 |
app = FastAPI()
|
25 |
|
26 |
app.add_middleware(
|
27 |
CORSMiddleware,
|
28 |
+
allow_origins=["*"], # Replace with specific domains in production
|
29 |
allow_credentials=True,
|
30 |
allow_methods=["*"],
|
31 |
allow_headers=["*"],
|
32 |
)
|
33 |
|
34 |
+
ALLOWED_EXTENSIONS = {'.wav', '.mp3', '.m4a', '.mp4', '.flac'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
@contextmanager
|
37 |
+
def temp_file_handler(upload_file: UploadFile):
|
38 |
+
"""Context manager to handle temporary file creation and cleanup."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
temp_dir = "temp_uploads"
|
|
|
40 |
os.makedirs(temp_dir, exist_ok=True)
|
41 |
+
temp_filename = f"temp_{uuid.uuid4()}{os.path.splitext(upload_file.filename)[1]}"
|
42 |
+
temp_filepath = os.path.join(temp_dir, temp_filename)
|
43 |
+
|
44 |
try:
|
|
|
45 |
with open(temp_filepath, "wb") as buffer:
|
46 |
+
shutil.copyfileobj(upload_file.file, buffer)
|
47 |
+
yield temp_filepath
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
finally:
|
|
|
49 |
if os.path.exists(temp_filepath):
|
50 |
os.remove(temp_filepath)
|
51 |
|
52 |
+
def validate_file_extension(filename: str):
|
53 |
+
"""Validate if the file extension is allowed."""
|
54 |
+
if not os.path.splitext(filename)[1].lower() in ALLOWED_EXTENSIONS:
|
55 |
+
raise HTTPException(
|
56 |
+
status_code=400,
|
57 |
+
detail="Invalid file type. Only .wav, .mp3, .m4a, .mp4, and .flac files are supported."
|
58 |
+
)
|
59 |
+
|
60 |
+
async def process_audio_file(upload_file: UploadFile, analysis_func, **kwargs):
|
61 |
+
"""Generic function to process an audio file with a given analysis function."""
|
62 |
+
validate_file_extension(upload_file.filename)
|
63 |
|
64 |
+
with temp_file_handler(upload_file) as temp_filepath:
|
65 |
+
try:
|
66 |
+
result = analysis_func(temp_filepath, **kwargs)
|
67 |
+
return JSONResponse(content=result)
|
68 |
+
except Exception as e:
|
69 |
+
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
+
@app.post("/analyze_fluency/")
|
72 |
+
async def analyze_fluency(file: UploadFile):
|
73 |
+
return await process_audio_file(file, analyze_fluency_main, model_size="base")
|
74 |
|
75 |
+
@app.post('/analyze_tone/')
|
76 |
+
async def analyze_tone(file: UploadFile):
|
77 |
+
return await process_audio_file(file, analyze_tone_main)
|
78 |
|
79 |
+
@app.post('/analyze_vcs/')
|
80 |
+
async def analyze_vcs(file: UploadFile):
|
81 |
+
return await process_audio_file(file, analyze_vcs_main)
|
|
|
82 |
|
83 |
@app.post('/analyze_vers/')
|
84 |
async def analyze_vers(file: UploadFile):
|
85 |
+
return await process_audio_file(file, analyze_vers_main)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
@app.post('/voice_confidence/')
|
88 |
async def analyze_voice_confidence(file: UploadFile):
|
89 |
+
return await process_audio_file(file, analyze_voice_confidence_main)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
@app.post('/analyze_vps/')
|
92 |
async def analyze_vps(file: UploadFile):
|
93 |
+
return await process_audio_file(file, analyze_vps_main)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
|
95 |
@app.post('/voice_engagement_score/')
|
96 |
async def analyze_voice_engagement_score(file: UploadFile):
|
97 |
+
return await process_audio_file(file, calc_voice_engagement_score)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
|
99 |
@app.post('/analyze_fillers/')
|
100 |
async def analyze_fillers_count(file: UploadFile):
|
101 |
+
return await process_audio_file(file, analyze_fillers)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
@app.post('/transcribe/')
|
104 |
async def transcribe(file: UploadFile):
|
105 |
+
validate_file_extension(file.filename)
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
+
start_time = time.time()
|
108 |
+
with temp_file_handler(file) as temp_filepath:
|
109 |
+
try:
|
110 |
+
transcript, language, _ = transcribe_audio(temp_filepath, model_size="base")
|
111 |
+
end_time = time.time()
|
112 |
+
response = {
|
113 |
+
"transcription": transcript,
|
114 |
+
"transcription_time": end_time - start_time,
|
115 |
+
"language": language
|
116 |
+
}
|
117 |
+
return JSONResponse(content=response)
|
118 |
+
except Exception as e:
|
119 |
+
raise HTTPException(status_code=500, detail=f"Transcription failed: {str(e)}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
@app.post('/analyze_all/')
|
122 |
async def analyze_all(file: UploadFile):
|
123 |
+
"""Endpoint to analyze all aspects of an uploaded audio file with single transcription."""
|
|
|
|
|
124 |
print(f"Received request at {datetime.datetime.now()} for file: {file.filename}")
|
125 |
+
validate_file_extension(file.filename)
|
|
|
126 |
|
127 |
+
with temp_file_handler(file) as temp_filepath:
|
128 |
+
try:
|
129 |
+
# Generate transcript once
|
130 |
+
transcript, language, _ = transcribe_audio(temp_filepath, model_size="base")
|
131 |
+
|
132 |
+
# Pass transcript to analysis functions that support it
|
133 |
+
analyze_all_start = time.time()
|
134 |
+
|
135 |
+
# Compute filler count
|
136 |
+
filler_start = time.time()
|
137 |
+
filler_count = analyze_fillers(temp_filepath)
|
138 |
+
filler_count_number = filler_count.get("total_fillers", 0)
|
139 |
+
filler_end = time.time()
|
140 |
+
print(f"Filler analysis time: {filler_end - filler_start} seconds")
|
141 |
+
|
142 |
+
fluency_start = time.time()
|
143 |
+
fluency_result = analyze_fluency_main(temp_filepath, model_size="base", filler_count = filler_count_number)
|
144 |
+
fluency_score = fluency_result['fluency_score']
|
145 |
+
fluency_end = time.time()
|
146 |
+
print(f"Fluency analysis time: {fluency_end - fluency_start} seconds")
|
147 |
+
|
148 |
+
tone_start = time.time()
|
149 |
+
tone_result = analyze_tone_main(temp_filepath)
|
150 |
+
tone_end = time.time()
|
151 |
+
print(f"Tone analysis time: {tone_end - tone_start} seconds")
|
152 |
+
|
153 |
+
vcs_start = time.time()
|
154 |
+
vcs_result = analyze_vcs_main(temp_filepath)
|
155 |
+
vcs_end = time.time()
|
156 |
+
print(f"VCS analysis time: {vcs_end - vcs_start} seconds")
|
157 |
+
|
158 |
+
vers_start = time.time()
|
159 |
+
vers_result = analyze_vers_main(temp_filepath, model_size="base", filler_count = filler_count_number)
|
160 |
+
vers_end = time.time()
|
161 |
+
print(f"VERS analysis time: {vers_end - vers_start} seconds")
|
162 |
+
|
163 |
+
voice_confidence_start = time.time()
|
164 |
+
voice_confidence_result = analyze_voice_confidence_main(temp_filepath, model_size="base", filler_count = filler_count_number, fluency_score = fluency_score)
|
165 |
+
print("voice_confidence_result:", voice_confidence_result)
|
|
|
|
|
|
|
|
|
|
|
|
|
166 |
|
167 |
+
voice_confidence_end = time.time()
|
168 |
+
print(f"Voice confidence analysis time: {voice_confidence_end - voice_confidence_start} seconds")
|
169 |
+
|
170 |
+
vps_start = time.time()
|
171 |
+
vps_result = analyze_vps_main(temp_filepath)
|
172 |
+
vps_end = time.time()
|
173 |
+
print(f"VPS analysis time: {vps_end - vps_start} seconds")
|
174 |
+
ves_start = time.time()
|
175 |
+
ves_result = calc_voice_engagement_score(temp_filepath)
|
176 |
+
ves_end = time.time()
|
177 |
+
print(f"VES analysis time: {ves_end - ves_start} seconds")
|
178 |
+
emotion_start = time.time()
|
179 |
+
emotion = predict_emotion(temp_filepath)
|
180 |
+
emotion_end = time.time()
|
181 |
+
print(f"Emotion analysis time: {emotion_end - emotion_start} seconds")
|
182 |
+
|
183 |
+
# Calculate average score
|
184 |
+
avg_score = (
|
185 |
+
fluency_result['fluency_score'] +
|
186 |
+
tone_result['speech_dynamism_score'] +
|
187 |
+
vcs_result['Voice Clarity Sore'] +
|
188 |
+
vers_result['VERS Score'] +
|
189 |
+
voice_confidence_result['voice_confidence_score'] +
|
190 |
+
vps_result['VPS'] +
|
191 |
+
ves_result['ves']
|
192 |
+
) / 7
|
193 |
+
|
194 |
+
analyze_all_end = time.time()
|
195 |
+
|
196 |
+
# Combine results
|
197 |
+
combined_result = {
|
198 |
+
"fluency": fluency_result,
|
199 |
+
"tone": tone_result,
|
200 |
+
"vcs": vcs_result,
|
201 |
+
"vers": vers_result,
|
202 |
+
"voice_confidence": voice_confidence_result,
|
203 |
+
"vps": vps_result,
|
204 |
+
"ves": ves_result,
|
205 |
+
"filler_words": filler_count,
|
206 |
+
"transcript": transcript,
|
207 |
+
"Detected Language": language,
|
208 |
+
"emotion": emotion,
|
209 |
+
"sank_score": avg_score,
|
210 |
+
"analysis_time": analyze_all_end - analyze_all_start,
|
211 |
+
}
|
212 |
+
|
213 |
+
return JSONResponse(content=combined_result)
|
214 |
+
|
215 |
+
except Exception as e:
|
216 |
+
raise HTTPException(status_code=500, detail=f"Analysis failed: {str(e)}")
|
filler_count/__pycache__/filler_score.cpython-312.pyc
CHANGED
Binary files a/filler_count/__pycache__/filler_score.cpython-312.pyc and b/filler_count/__pycache__/filler_score.cpython-312.pyc differ
|
|
filler_count/filler_score.py
CHANGED
@@ -2,7 +2,7 @@ import re
|
|
2 |
import whisper
|
3 |
from pydub import AudioSegment # For accurate duration calculation
|
4 |
|
5 |
-
def analyze_fillers(file_path: str, model_size: str = "base") -> dict:
|
6 |
"""
|
7 |
Analyzes English filler words in audio with proper duration handling.
|
8 |
"""
|
@@ -18,10 +18,11 @@ def analyze_fillers(file_path: str, model_size: str = "base") -> dict:
|
|
18 |
audio = AudioSegment.from_file(file_path)
|
19 |
duration = len(audio) / 1000 # Convert ms to seconds
|
20 |
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
|
|
25 |
|
26 |
# Case-insensitive regex matching
|
27 |
pattern = r"(?<!\w)(" + "|".join(map(re.escape, FILLER_WORDS)) + r")(?!\w)"
|
|
|
2 |
import whisper
|
3 |
from pydub import AudioSegment # For accurate duration calculation
|
4 |
|
5 |
+
def analyze_fillers(file_path: str, model_size: str = "base", transcript = None ) -> dict:
|
6 |
"""
|
7 |
Analyzes English filler words in audio with proper duration handling.
|
8 |
"""
|
|
|
18 |
audio = AudioSegment.from_file(file_path)
|
19 |
duration = len(audio) / 1000 # Convert ms to seconds
|
20 |
|
21 |
+
if transcript is None:
|
22 |
+
# Then run Whisper transcription
|
23 |
+
model = whisper.load_model(model_size)
|
24 |
+
result = model.transcribe(file_path, word_timestamps=False, fp16=False)
|
25 |
+
transcript = result["text"]
|
26 |
|
27 |
# Case-insensitive regex matching
|
28 |
pattern = r"(?<!\w)(" + "|".join(map(re.escape, FILLER_WORDS)) + r")(?!\w)"
|
fluency/__pycache__/compute_fluency.cpython-312.pyc
CHANGED
Binary files a/fluency/__pycache__/compute_fluency.cpython-312.pyc and b/fluency/__pycache__/compute_fluency.cpython-312.pyc differ
|
|
fluency/__pycache__/fluency_api.cpython-312.pyc
CHANGED
Binary files a/fluency/__pycache__/fluency_api.cpython-312.pyc and b/fluency/__pycache__/fluency_api.cpython-312.pyc differ
|
|
fluency/compute_fluency.py
CHANGED
@@ -6,9 +6,14 @@ import librosa
|
|
6 |
import numpy as np
|
7 |
from typing import Dict, Any, Union
|
8 |
from .fluency import calc_srs, calculate_pas, calculate_fluency, get_fluency_insight
|
9 |
-
from .
|
10 |
|
11 |
-
|
|
|
|
|
|
|
|
|
|
|
12 |
"""
|
13 |
Compute fluency score and its components from a speech sample.
|
14 |
|
@@ -20,7 +25,7 @@ def compute_fluency_score(file_path: str, whisper_model) -> Dict[str, Any]:
|
|
20 |
dict: A dictionary containing fluency score, SRS, PAS, and component scores.
|
21 |
"""
|
22 |
# Transcribe audio
|
23 |
-
result = whisper_model.transcribe(file_path)
|
24 |
transcript = result.get("text", "").strip()
|
25 |
segments = result.get("segments", [])
|
26 |
|
@@ -28,8 +33,11 @@ def compute_fluency_score(file_path: str, whisper_model) -> Dict[str, Any]:
|
|
28 |
if not transcript or not segments:
|
29 |
raise ValueError("Empty transcript or segments from Whisper.")
|
30 |
|
31 |
-
|
32 |
-
|
|
|
|
|
|
|
33 |
|
34 |
# Load audio
|
35 |
y, sr = librosa.load(file_path, sr=None)
|
@@ -37,16 +45,20 @@ def compute_fluency_score(file_path: str, whisper_model) -> Dict[str, Any]:
|
|
37 |
if duration <= 0:
|
38 |
raise ValueError("Audio duration invalid or zero.")
|
39 |
|
40 |
-
# Calculate pitch variation (in semitones)
|
41 |
-
|
42 |
-
|
43 |
-
voiced_f0 = f0[
|
|
|
|
|
|
|
|
|
44 |
pitch_variation = 0.0
|
45 |
if voiced_f0.size > 0:
|
46 |
-
median_f0 = np.
|
47 |
median_f0 = max(median_f0, 1e-6)
|
48 |
semitone_diffs = 12 * np.log2(voiced_f0 / median_f0)
|
49 |
-
pitch_variation = float(np.
|
50 |
|
51 |
# Analyze pauses
|
52 |
long_pause_count = 0
|
@@ -85,22 +97,14 @@ def compute_fluency_score(file_path: str, whisper_model) -> Dict[str, Any]:
|
|
85 |
# Calculate final fluency score
|
86 |
fluency_result = calculate_fluency(srs=srs_score, pas=pas_score)
|
87 |
fluency_score = fluency_result["score"]
|
88 |
-
insight = get_fluency_insight(fluency_score)
|
89 |
|
90 |
-
# Build and return comprehensive result
|
91 |
return {
|
92 |
"fluency_score": fluency_score,
|
93 |
-
"insight": insight,
|
94 |
"SRS": srs_score,
|
95 |
"PAS": pas_score,
|
96 |
-
"
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
"pitch_variation": pitch_variation,
|
101 |
-
"word_count": word_count,
|
102 |
-
"duration": duration,
|
103 |
-
"pas_components": pas_result
|
104 |
-
},
|
105 |
"transcript": transcript
|
106 |
-
}
|
|
|
6 |
import numpy as np
|
7 |
from typing import Dict, Any, Union
|
8 |
from .fluency import calc_srs, calculate_pas, calculate_fluency, get_fluency_insight
|
9 |
+
from filler_count.filler_score import analyze_fillers
|
10 |
|
11 |
+
from typing import Dict, Any
|
12 |
+
import numpy as np
|
13 |
+
import librosa
|
14 |
+
import pyworld
|
15 |
+
|
16 |
+
def compute_fluency_score(file_path: str, whisper_model, filler_count= None) -> Dict[str, Any]:
|
17 |
"""
|
18 |
Compute fluency score and its components from a speech sample.
|
19 |
|
|
|
25 |
dict: A dictionary containing fluency score, SRS, PAS, and component scores.
|
26 |
"""
|
27 |
# Transcribe audio
|
28 |
+
result = whisper_model.transcribe(file_path, word_timestamps=False, fp16=False)
|
29 |
transcript = result.get("text", "").strip()
|
30 |
segments = result.get("segments", [])
|
31 |
|
|
|
33 |
if not transcript or not segments:
|
34 |
raise ValueError("Empty transcript or segments from Whisper.")
|
35 |
|
36 |
+
if filler_count is None:
|
37 |
+
# Detect filler words
|
38 |
+
result = analyze_fillers(file_path,"base", transcript)
|
39 |
+
filler_score = result.get("filler_score", 0)
|
40 |
+
filler_count = result.get("total_fillers", 0)
|
41 |
|
42 |
# Load audio
|
43 |
y, sr = librosa.load(file_path, sr=None)
|
|
|
45 |
if duration <= 0:
|
46 |
raise ValueError("Audio duration invalid or zero.")
|
47 |
|
48 |
+
# Calculate pitch variation (in semitones) using pyworld
|
49 |
+
_f0, t = pyworld.harvest(y.astype(np.float64), sr, f0_floor=80.0, f0_ceil=400.0, frame_period=1000 * 256 / sr)
|
50 |
+
f0 = pyworld.stonemask(y.astype(np.float64), _f0, t, sr)
|
51 |
+
voiced_f0 = f0[f0 > 0]
|
52 |
+
voiced_f0 = voiced_f0[
|
53 |
+
(voiced_f0 > np.percentile(voiced_f0, 5)) &
|
54 |
+
(voiced_f0 < np.percentile(voiced_f0, 95))
|
55 |
+
]
|
56 |
pitch_variation = 0.0
|
57 |
if voiced_f0.size > 0:
|
58 |
+
median_f0 = np.median(voiced_f0)
|
59 |
median_f0 = max(median_f0, 1e-6)
|
60 |
semitone_diffs = 12 * np.log2(voiced_f0 / median_f0)
|
61 |
+
pitch_variation = float(np.std(semitone_diffs))
|
62 |
|
63 |
# Analyze pauses
|
64 |
long_pause_count = 0
|
|
|
97 |
# Calculate final fluency score
|
98 |
fluency_result = calculate_fluency(srs=srs_score, pas=pas_score)
|
99 |
fluency_score = fluency_result["score"]
|
|
|
100 |
|
|
|
101 |
return {
|
102 |
"fluency_score": fluency_score,
|
|
|
103 |
"SRS": srs_score,
|
104 |
"PAS": pas_score,
|
105 |
+
"pitch_variation": pitch_variation,
|
106 |
+
"filler_count": filler_count,
|
107 |
+
"long_pause_count": long_pause_count,
|
108 |
+
"WPM": words_per_min,
|
|
|
|
|
|
|
|
|
|
|
109 |
"transcript": transcript
|
110 |
+
}
|
fluency/fluency_api.py
CHANGED
@@ -1,12 +1,12 @@
|
|
1 |
import whisper
|
2 |
from .compute_fluency import compute_fluency_score
|
3 |
|
4 |
-
def main(file_path: str, model_size: str = "base") -> dict:
|
5 |
try:
|
6 |
|
7 |
whisper_model = whisper.load_model(model_size)
|
8 |
|
9 |
-
results = compute_fluency_score(file_path, whisper_model)
|
10 |
|
11 |
# Structure response
|
12 |
response = {
|
|
|
1 |
import whisper
|
2 |
from .compute_fluency import compute_fluency_score
|
3 |
|
4 |
+
def main(file_path: str, model_size: str = "base", filler_count = None) -> dict:
|
5 |
try:
|
6 |
|
7 |
whisper_model = whisper.load_model(model_size)
|
8 |
|
9 |
+
results = compute_fluency_score(file_path, whisper_model, filler_count)
|
10 |
|
11 |
# Structure response
|
12 |
response = {
|
vcs/__pycache__/compute_vcs.cpython-312.pyc
CHANGED
Binary files a/vcs/__pycache__/compute_vcs.cpython-312.pyc and b/vcs/__pycache__/compute_vcs.cpython-312.pyc differ
|
|
vcs/compute_vcs.py
CHANGED
@@ -19,7 +19,7 @@ def compute_voice_clarity_score(file_path: str, whisper_model) -> Dict[str, Any]
|
|
19 |
dict: A dictionary containing Voice Clarity Score and component scores.
|
20 |
"""
|
21 |
# Transcribe audio
|
22 |
-
result = whisper_model.transcribe(file_path)
|
23 |
transcript = result.get("text", "").strip()
|
24 |
segments = result.get("segments", [])
|
25 |
|
@@ -36,8 +36,6 @@ def compute_voice_clarity_score(file_path: str, whisper_model) -> Dict[str, Any]
|
|
36 |
# Calculate Voice Clarity Score
|
37 |
clarity_result = calculate_voice_clarity_score(y, sr, segments)
|
38 |
|
39 |
-
# Add transcript to results
|
40 |
-
clarity_result["transcript"] = transcript
|
41 |
|
42 |
# Add word count and duration info for reference
|
43 |
word_count = len(transcript.split())
|
@@ -61,54 +59,10 @@ def analyze_voice_quality(file_path: str, whisper_model) -> Dict[str, Any]:
|
|
61 |
clarity_results = compute_voice_clarity_score(file_path, whisper_model)
|
62 |
vcs = clarity_results["VCS"]
|
63 |
|
64 |
-
# Load audio for additional analysis
|
65 |
-
y, sr = librosa.load(file_path, sr=None)
|
66 |
-
|
67 |
-
# Calculate additional voice quality metrics
|
68 |
-
|
69 |
-
# Voice stability - based on pitch (F0) stability
|
70 |
-
f0, voiced_flags, voiced_probs = librosa.pyin(
|
71 |
-
y, sr=sr, fmin=80, fmax=400, frame_length=1024, hop_length=256, fill_na=np.nan)
|
72 |
-
voiced_f0 = f0[~np.isnan(f0)]
|
73 |
-
|
74 |
-
pitch_stability = 0.0
|
75 |
-
if voiced_f0.size > 0:
|
76 |
-
# Calculate coefficient of variation (lower is more stable)
|
77 |
-
cv = np.std(voiced_f0) / np.mean(voiced_f0) if np.mean(voiced_f0) > 0 else float('inf')
|
78 |
-
# Convert to score (0-100)
|
79 |
-
pitch_stability = max(0, min(100, 100 - (cv * 100)))
|
80 |
-
|
81 |
-
# Voice resonance - based on spectral bandwidth
|
82 |
-
bandwidth = np.mean(librosa.feature.spectral_bandwidth(y=y, sr=sr))
|
83 |
-
# Normalize (ideal range is around 1500-2500 Hz for speech)
|
84 |
-
if bandwidth < 1000:
|
85 |
-
resonance_score = max(0, bandwidth / 1000 * 70) # Too narrow
|
86 |
-
elif bandwidth <= 2500:
|
87 |
-
resonance_score = 70 + ((bandwidth - 1000) / 1500 * 30) # Optimal range
|
88 |
-
else:
|
89 |
-
resonance_score = max(0, 100 - ((bandwidth - 2500) / 2500 * 50)) # Too wide
|
90 |
-
|
91 |
-
# Voice strength - based on RMS energy
|
92 |
-
rms = np.mean(librosa.feature.rms(y=y))
|
93 |
-
# Normalize (typical speech RMS values range from 0.01 to 0.2)
|
94 |
-
strength_score = min(100, max(0, rms / 0.2 * 100))
|
95 |
-
|
96 |
-
# Combine additional metrics
|
97 |
-
additional_metrics = {
|
98 |
-
"pitch_stability": pitch_stability,
|
99 |
-
"voice_resonance": resonance_score,
|
100 |
-
"voice_strength": strength_score
|
101 |
-
}
|
102 |
|
103 |
# Add to results
|
104 |
combined_results = {
|
105 |
"VCS": vcs,
|
106 |
-
"insight": clarity_results["insight"],
|
107 |
-
"components": {
|
108 |
-
**clarity_results["components"],
|
109 |
-
**additional_metrics
|
110 |
-
},
|
111 |
-
"transcript": clarity_results["transcript"]
|
112 |
}
|
113 |
|
114 |
return combined_results
|
|
|
19 |
dict: A dictionary containing Voice Clarity Score and component scores.
|
20 |
"""
|
21 |
# Transcribe audio
|
22 |
+
result = whisper_model.transcribe(file_path, word_timestamps=False, fp16=False)
|
23 |
transcript = result.get("text", "").strip()
|
24 |
segments = result.get("segments", [])
|
25 |
|
|
|
36 |
# Calculate Voice Clarity Score
|
37 |
clarity_result = calculate_voice_clarity_score(y, sr, segments)
|
38 |
|
|
|
|
|
39 |
|
40 |
# Add word count and duration info for reference
|
41 |
word_count = len(transcript.split())
|
|
|
59 |
clarity_results = compute_voice_clarity_score(file_path, whisper_model)
|
60 |
vcs = clarity_results["VCS"]
|
61 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
# Add to results
|
64 |
combined_results = {
|
65 |
"VCS": vcs,
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
}
|
67 |
|
68 |
return combined_results
|
vers/__pycache__/compute_vers_score.cpython-312.pyc
CHANGED
Binary files a/vers/__pycache__/compute_vers_score.cpython-312.pyc and b/vers/__pycache__/compute_vers_score.cpython-312.pyc differ
|
|
vers/__pycache__/vers.cpython-312.pyc
CHANGED
Binary files a/vers/__pycache__/vers.cpython-312.pyc and b/vers/__pycache__/vers.cpython-312.pyc differ
|
|
vers/__pycache__/vers_api.cpython-312.pyc
CHANGED
Binary files a/vers/__pycache__/vers_api.cpython-312.pyc and b/vers/__pycache__/vers_api.cpython-312.pyc differ
|
|
vers/compute_vers_score.py
CHANGED
@@ -4,19 +4,23 @@ import numpy as np
|
|
4 |
import math
|
5 |
from .filler_analyzer import detect_fillers
|
6 |
from .find_valence import get_valence_score
|
|
|
|
|
7 |
|
8 |
-
def compute_vers_score(file_path: str, whisper_model) -> dict:
|
9 |
"""
|
10 |
Compute VERS (Vocal Emotional Regulation Score) and its components from a speech sample.
|
11 |
"""
|
12 |
-
result = whisper_model.transcribe(file_path)
|
13 |
transcript = result.get("text", "").strip()
|
14 |
segments = result.get("segments", [])
|
15 |
|
16 |
|
17 |
|
|
|
18 |
# Filler count
|
19 |
-
|
|
|
20 |
|
21 |
# Load audio
|
22 |
y, sr = librosa.load(file_path, sr=None)
|
@@ -32,16 +36,20 @@ def compute_vers_score(file_path: str, whisper_model) -> dict:
|
|
32 |
vol_max = np.max(np.abs(y)) if y.size > 0 else 0.0
|
33 |
vol_max_db = 20 * math.log10(vol_max + 1e-6) if vol_max > 0 else -80.0
|
34 |
|
35 |
-
#
|
36 |
-
|
37 |
-
|
38 |
-
voiced_f0 = f0[
|
|
|
|
|
|
|
|
|
39 |
pitch_variation = 0.0
|
40 |
if voiced_f0.size > 0:
|
41 |
-
median_f0 = np.
|
42 |
median_f0 = max(median_f0, 1e-6)
|
43 |
semitone_diffs = 12 * np.log2(voiced_f0 / median_f0)
|
44 |
-
pitch_variation = float(np.
|
45 |
|
46 |
# Pause analysis
|
47 |
total_speaking_time = 0.0
|
|
|
4 |
import math
|
5 |
from .filler_analyzer import detect_fillers
|
6 |
from .find_valence import get_valence_score
|
7 |
+
from filler_count.filler_score import analyze_fillers
|
8 |
+
import pyworld
|
9 |
|
10 |
+
def compute_vers_score(file_path: str, whisper_model, filler_count = None) -> dict:
|
11 |
"""
|
12 |
Compute VERS (Vocal Emotional Regulation Score) and its components from a speech sample.
|
13 |
"""
|
14 |
+
result = whisper_model.transcribe(file_path, word_timestamps=False, fp16=False)
|
15 |
transcript = result.get("text", "").strip()
|
16 |
segments = result.get("segments", [])
|
17 |
|
18 |
|
19 |
|
20 |
+
if filler_count is None:
|
21 |
# Filler count
|
22 |
+
result = analyze_fillers(file_path,'base', transcript)
|
23 |
+
filler_count = result.get("filler_count", 0)
|
24 |
|
25 |
# Load audio
|
26 |
y, sr = librosa.load(file_path, sr=None)
|
|
|
36 |
vol_max = np.max(np.abs(y)) if y.size > 0 else 0.0
|
37 |
vol_max_db = 20 * math.log10(vol_max + 1e-6) if vol_max > 0 else -80.0
|
38 |
|
39 |
+
# Calculate pitch variation (in semitones) using pyworld
|
40 |
+
_f0, t = pyworld.harvest(y.astype(np.float64), sr, f0_floor=80.0, f0_ceil=400.0, frame_period=1000 * 256 / sr)
|
41 |
+
f0 = pyworld.stonemask(y.astype(np.float64), _f0, t, sr)
|
42 |
+
voiced_f0 = f0[f0 > 0]
|
43 |
+
voiced_f0 = voiced_f0[
|
44 |
+
(voiced_f0 > np.percentile(voiced_f0, 5)) &
|
45 |
+
(voiced_f0 < np.percentile(voiced_f0, 95))
|
46 |
+
]
|
47 |
pitch_variation = 0.0
|
48 |
if voiced_f0.size > 0:
|
49 |
+
median_f0 = np.median(voiced_f0)
|
50 |
median_f0 = max(median_f0, 1e-6)
|
51 |
semitone_diffs = 12 * np.log2(voiced_f0 / median_f0)
|
52 |
+
pitch_variation = float(np.std(semitone_diffs))
|
53 |
|
54 |
# Pause analysis
|
55 |
total_speaking_time = 0.0
|
vers/vers.py
CHANGED
@@ -22,7 +22,7 @@ def calc_ess(pitch_variation, vol_max_db, mean_volume_db, valence_scores):
|
|
22 |
valence_stability = 100 - (np.std(valence_scores) * 20)
|
23 |
|
24 |
ESS = (0.45 * float(tonal_steadiness)) + (0.35 * float(loudness_stability)) + (0.2 * float(valence_stability))
|
25 |
-
print(f" tonal_steadiness: {tonal_steadiness}, loudness_stability: {loudness_stability}, valence_stability: {valence_stability}")
|
26 |
return ESS
|
27 |
|
28 |
def calc_lcs(volume_std, vol_max_db, mean_volume_db):
|
@@ -67,7 +67,7 @@ def calc_srs(wpm, filler_count, long_pause_count, pitch_variation):
|
|
67 |
|
68 |
# Final SRS Score
|
69 |
SRS = (0.45 * wpm_consistency) + (0.55 * stability)
|
70 |
-
print(f"wpm_consistency: {wpm_consistency}, stability: {stability}")
|
71 |
return min(100, max(0, SRS))
|
72 |
|
73 |
def calc_vers(filler_count, long_pause_count, pitch_variation, mean_volume_db, vol_max_db, wpm, volume_std, valence_scores):
|
@@ -93,10 +93,10 @@ def calc_vers(filler_count, long_pause_count, pitch_variation, mean_volume_db, v
|
|
93 |
|
94 |
return {
|
95 |
"VERS": int(VERS),
|
96 |
-
"ESS": round(ESS, 1),
|
97 |
-
"LCS": round(LCS, 1),
|
98 |
-
"SRS": round(SRS, 1),
|
99 |
-
"insight": insight
|
100 |
}
|
101 |
|
102 |
# # Test input
|
|
|
22 |
valence_stability = 100 - (np.std(valence_scores) * 20)
|
23 |
|
24 |
ESS = (0.45 * float(tonal_steadiness)) + (0.35 * float(loudness_stability)) + (0.2 * float(valence_stability))
|
25 |
+
#print(f" tonal_steadiness: {tonal_steadiness}, loudness_stability: {loudness_stability}, valence_stability: {valence_stability}")
|
26 |
return ESS
|
27 |
|
28 |
def calc_lcs(volume_std, vol_max_db, mean_volume_db):
|
|
|
67 |
|
68 |
# Final SRS Score
|
69 |
SRS = (0.45 * wpm_consistency) + (0.55 * stability)
|
70 |
+
#print(f"wpm_consistency: {wpm_consistency}, stability: {stability}")
|
71 |
return min(100, max(0, SRS))
|
72 |
|
73 |
def calc_vers(filler_count, long_pause_count, pitch_variation, mean_volume_db, vol_max_db, wpm, volume_std, valence_scores):
|
|
|
93 |
|
94 |
return {
|
95 |
"VERS": int(VERS),
|
96 |
+
# "ESS": round(ESS, 1),
|
97 |
+
# "LCS": round(LCS, 1),
|
98 |
+
# "SRS": round(SRS, 1),
|
99 |
+
# "insight": insight
|
100 |
}
|
101 |
|
102 |
# # Test input
|
vers/vers_api.py
CHANGED
@@ -17,13 +17,13 @@ def convert_numpy_types(obj):
|
|
17 |
else:
|
18 |
return obj
|
19 |
|
20 |
-
def main(file_path: str, model_size: str = "base") -> dict:
|
21 |
try:
|
22 |
# Load whisper model
|
23 |
whisper_model = whisper.load_model(model_size)
|
24 |
|
25 |
# Compute VERS score
|
26 |
-
results = compute_vers_score(file_path, whisper_model)
|
27 |
|
28 |
# Convert any NumPy types to native Python types
|
29 |
results = convert_numpy_types(results)
|
|
|
17 |
else:
|
18 |
return obj
|
19 |
|
20 |
+
def main(file_path: str, model_size: str = "base", filler_count = None) -> dict:
|
21 |
try:
|
22 |
# Load whisper model
|
23 |
whisper_model = whisper.load_model(model_size)
|
24 |
|
25 |
# Compute VERS score
|
26 |
+
results = compute_vers_score(file_path, whisper_model, filler_count)
|
27 |
|
28 |
# Convert any NumPy types to native Python types
|
29 |
results = convert_numpy_types(results)
|
voice_confidence_score/__pycache__/voice_confidence.cpython-312.pyc
CHANGED
Binary files a/voice_confidence_score/__pycache__/voice_confidence.cpython-312.pyc and b/voice_confidence_score/__pycache__/voice_confidence.cpython-312.pyc differ
|
|
voice_confidence_score/__pycache__/voice_confidence_api.cpython-312.pyc
CHANGED
Binary files a/voice_confidence_score/__pycache__/voice_confidence_api.cpython-312.pyc and b/voice_confidence_score/__pycache__/voice_confidence_api.cpython-312.pyc differ
|
|
voice_confidence_score/voice_confidence.py
CHANGED
@@ -5,11 +5,11 @@ from fluency.compute_fluency import compute_fluency_score
|
|
5 |
from vcs.compute_vcs import analyze_voice_quality
|
6 |
|
7 |
|
8 |
-
def calc_fluency_score(audio_path, whisper_model):
|
9 |
|
10 |
# Calculate fluency score
|
11 |
print(f"Analyzing fluency for {audio_path}...")
|
12 |
-
results = compute_fluency_score(audio_path, whisper_model)
|
13 |
fluency_score = results['fluency_score']
|
14 |
|
15 |
return fluency_score
|
@@ -26,9 +26,12 @@ def calc_vcs(audio_path, whisper_model):
|
|
26 |
|
27 |
dominance = 5.6 # dummy for now i add later
|
28 |
|
29 |
-
def calc_voice_confidence_score(audio_path, model):
|
30 |
|
31 |
-
fluency_score
|
|
|
|
|
|
|
32 |
vcs = calc_vcs(audio_path, model)
|
33 |
|
34 |
# Calculate voice confidence score
|
|
|
5 |
from vcs.compute_vcs import analyze_voice_quality
|
6 |
|
7 |
|
8 |
+
def calc_fluency_score(audio_path, whisper_model, filler_count=None):
|
9 |
|
10 |
# Calculate fluency score
|
11 |
print(f"Analyzing fluency for {audio_path}...")
|
12 |
+
results = compute_fluency_score(audio_path, whisper_model, filler_count)
|
13 |
fluency_score = results['fluency_score']
|
14 |
|
15 |
return fluency_score
|
|
|
26 |
|
27 |
dominance = 5.6 # dummy for now i add later
|
28 |
|
29 |
+
def calc_voice_confidence_score(audio_path, model, filler_count= None, fluency_score=None):
|
30 |
|
31 |
+
if fluency_score is None:
|
32 |
+
print(' No args passed Calling calc_fluency_score')
|
33 |
+
fluency_score = calc_fluency_score(audio_path, model, filler_count)
|
34 |
+
|
35 |
vcs = calc_vcs(audio_path, model)
|
36 |
|
37 |
# Calculate voice confidence score
|
voice_confidence_score/voice_confidence_api.py
CHANGED
@@ -1,13 +1,13 @@
|
|
1 |
import whisper
|
2 |
from .voice_confidence import calc_voice_confidence_score
|
3 |
|
4 |
-
def main(file_path: str, model_size: str = "base") -> dict:
|
5 |
try:
|
6 |
# Load the Whisper model
|
7 |
whisper_model = whisper.load_model(model_size)
|
8 |
|
9 |
# Calculate the voice confidence score
|
10 |
-
result = calc_voice_confidence_score(file_path, whisper_model)
|
11 |
|
12 |
# Return the result as a dictionary
|
13 |
return {"voice_confidence_score": round(result, 2)}
|
|
|
1 |
import whisper
|
2 |
from .voice_confidence import calc_voice_confidence_score
|
3 |
|
4 |
+
def main(file_path: str, model_size: str = "base", filler_count = None, fluency_score = None) -> dict:
|
5 |
try:
|
6 |
# Load the Whisper model
|
7 |
whisper_model = whisper.load_model(model_size)
|
8 |
|
9 |
# Calculate the voice confidence score
|
10 |
+
result = calc_voice_confidence_score(file_path, whisper_model, filler_count, fluency_score)
|
11 |
|
12 |
# Return the result as a dictionary
|
13 |
return {"voice_confidence_score": round(result, 2)}
|
vps/__pycache__/compute_vps_score.cpython-312.pyc
CHANGED
Binary files a/vps/__pycache__/compute_vps_score.cpython-312.pyc and b/vps/__pycache__/compute_vps_score.cpython-312.pyc differ
|
|
vps/__pycache__/vps.cpython-312.pyc
CHANGED
Binary files a/vps/__pycache__/vps.cpython-312.pyc and b/vps/__pycache__/vps.cpython-312.pyc differ
|
|
vps/__pycache__/vps_api.cpython-312.pyc
CHANGED
Binary files a/vps/__pycache__/vps_api.cpython-312.pyc and b/vps/__pycache__/vps_api.cpython-312.pyc differ
|
|
vps/compute_vps_score.py
CHANGED
@@ -2,7 +2,9 @@ from .vps import calculate_vps # Your file where calc_srs, calculate_pas, calcu
|
|
2 |
import librosa
|
3 |
import numpy as np
|
4 |
import math
|
5 |
-
|
|
|
|
|
6 |
|
7 |
def compute_vps_score(file_path: str, whisper_model) -> dict:
|
8 |
"""
|
@@ -16,7 +18,7 @@ def compute_vps_score(file_path: str, whisper_model) -> dict:
|
|
16 |
dict: A dictionary containing VPS, SRS, PAS, RCS, and component scores.
|
17 |
"""
|
18 |
# Transcribe
|
19 |
-
result = whisper_model.transcribe(file_path)
|
20 |
transcript = result.get("text", "").strip()
|
21 |
segments = result.get("segments", [])
|
22 |
|
@@ -25,7 +27,8 @@ def compute_vps_score(file_path: str, whisper_model) -> dict:
|
|
25 |
raise ValueError("Empty transcript or segments from Whisper.")
|
26 |
|
27 |
# Filler count
|
28 |
-
|
|
|
29 |
|
30 |
# Load audio
|
31 |
y, sr = librosa.load(file_path, sr=None)
|
@@ -33,16 +36,20 @@ def compute_vps_score(file_path: str, whisper_model) -> dict:
|
|
33 |
if duration <= 0:
|
34 |
raise ValueError("Audio duration invalid or zero.")
|
35 |
|
36 |
-
#
|
37 |
-
|
38 |
-
|
39 |
-
voiced_f0 = f0[
|
|
|
|
|
|
|
|
|
40 |
pitch_variation = 0.0
|
41 |
if voiced_f0.size > 0:
|
42 |
-
median_f0 = np.
|
43 |
median_f0 = max(median_f0, 1e-6)
|
44 |
semitone_diffs = 12 * np.log2(voiced_f0 / median_f0)
|
45 |
-
pitch_variation = float(np.
|
46 |
|
47 |
# Pause analysis
|
48 |
long_pause_count = 0
|
@@ -74,6 +81,4 @@ def compute_vps_score(file_path: str, whisper_model) -> dict:
|
|
74 |
sr=sr
|
75 |
)
|
76 |
|
77 |
-
# Include transcript optionally
|
78 |
-
vps_result["transcript"] = transcript
|
79 |
return vps_result
|
|
|
2 |
import librosa
|
3 |
import numpy as np
|
4 |
import math
|
5 |
+
|
6 |
+
import pyworld
|
7 |
+
from filler_count.filler_score import analyze_fillers
|
8 |
|
9 |
def compute_vps_score(file_path: str, whisper_model) -> dict:
|
10 |
"""
|
|
|
18 |
dict: A dictionary containing VPS, SRS, PAS, RCS, and component scores.
|
19 |
"""
|
20 |
# Transcribe
|
21 |
+
result = whisper_model.transcribe(file_path, word_timestamps=False, fp16=False)
|
22 |
transcript = result.get("text", "").strip()
|
23 |
segments = result.get("segments", [])
|
24 |
|
|
|
27 |
raise ValueError("Empty transcript or segments from Whisper.")
|
28 |
|
29 |
# Filler count
|
30 |
+
result = analyze_fillers(file_path,'base',transcript)
|
31 |
+
filler_count = result.get("filler_count", 0)
|
32 |
|
33 |
# Load audio
|
34 |
y, sr = librosa.load(file_path, sr=None)
|
|
|
36 |
if duration <= 0:
|
37 |
raise ValueError("Audio duration invalid or zero.")
|
38 |
|
39 |
+
# Calculate pitch variation (in semitones) using pyworld
|
40 |
+
_f0, t = pyworld.harvest(y.astype(np.float64), sr, f0_floor=80.0, f0_ceil=400.0, frame_period=1000 * 256 / sr)
|
41 |
+
f0 = pyworld.stonemask(y.astype(np.float64), _f0, t, sr)
|
42 |
+
voiced_f0 = f0[f0 > 0]
|
43 |
+
voiced_f0 = voiced_f0[
|
44 |
+
(voiced_f0 > np.percentile(voiced_f0, 5)) &
|
45 |
+
(voiced_f0 < np.percentile(voiced_f0, 95))
|
46 |
+
]
|
47 |
pitch_variation = 0.0
|
48 |
if voiced_f0.size > 0:
|
49 |
+
median_f0 = np.median(voiced_f0)
|
50 |
median_f0 = max(median_f0, 1e-6)
|
51 |
semitone_diffs = 12 * np.log2(voiced_f0 / median_f0)
|
52 |
+
pitch_variation = float(np.std(semitone_diffs))
|
53 |
|
54 |
# Pause analysis
|
55 |
long_pause_count = 0
|
|
|
81 |
sr=sr
|
82 |
)
|
83 |
|
|
|
|
|
84 |
return vps_result
|