crpatel's picture
gradio app
fb26382
import gradio as gr
import torch
from transformers import AutoTokenizer
import yaml
from SmolLm3 import LlamaModel
def generate_helper(model, idx, max_new_tokens, context_length, temperature=1.0, top_k=None, eos_token=None, device=None):
model = model.to(device)
idx = idx.to(device)
model.eval()
for _ in range(max_new_tokens):
idx_cond = idx[:, -context_length:]
with torch.no_grad():
logits, _ = model(idx_cond) # Unpack both logits and loss (ignore loss)
logits = logits.view(idx_cond.shape[0], -1, model.config['vocab_size']) # Reshape to [batch, seq, vocab]
# Get the logits for the last token only
logits = logits[:, -1, :] # Shape: [batch_size, vocab_size]
if top_k is not None:
# top k sampling
top_logits, top_pos = torch.topk(logits, top_k)
min_logit = top_logits[:, -1].unsqueeze(-1)
logits = torch.where(logits < min_logit,
torch.tensor(float('-inf')).to(logits.device),
logits)
# temperature scaling
if temperature > 0.0:
logits /= temperature
probs = torch.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
else:
idx_next = torch.argmax(logits, dim=-1, keepdim=True)
if idx_next.item() == eos_token:
break
idx = torch.cat((idx, idx_next), dim=1)
model.train()
return idx
def get_config(config_path):
config = yaml.load(open(config_path, "r"), Loader=yaml.FullLoader)
return config
def load_model_from_checkpoint(config_path, checkpoint_path, device):
config = get_config(config_path)
model = LlamaModel(config['model'])
checkpoint = torch.load(checkpoint_path, map_location=torch.device(device))
state_dict = checkpoint['model_state_dict']
state_dict = {k.replace('_orig_mod.', ''): v for k, v in state_dict.items()}
model.load_state_dict(state_dict)
return model
def load_weights(config, weights_path, device):
model = LlamaModel(config['model'])
model.load_state_dict(torch.load(weights_path, map_location=torch.device(device)))
return model
def get_tokenizer(config):
tokenizer_path = config['tokenizer']['tokenizer_name_or_path']
tokenizer = AutoTokenizer.from_pretrained(tokenizer_path)
tokenizer.pad_token = tokenizer.eos_token
vocab_size = tokenizer.vocab_size
return tokenizer, vocab_size
def generate_text(model, tokenizer, input_text, max_new_tokens, context_length, temperature, top_k, eos_token, device):
encoded_text = tokenizer.encode(input_text, return_tensors="pt").to(device)
generated_text = generate_helper(model,
idx=encoded_text,
max_new_tokens=max_new_tokens,
context_length=context_length,
temperature=temperature,
top_k=top_k,
eos_token=eos_token,
device=device)
return tokenizer.decode(generated_text.squeeze(0))
# Initialize model and tokenizer
def initialize_model():
config_path = "config_smollm2_135M.yaml"
checkpoint_path = "/Users/chiragtagadiya/Documents/Final_training_before_stop_smolllm3/checkpoints/model_37000_steps_avg_loss_2.85920_optimizer_lr_0.00000003.pth" # Update this path
weights_path = "model_weights_35000_step.pt"
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load configuration
config = get_config(config_path)
# Load model
# model = load_model_from_checkpoint(config_path, checkpoint_path, device)
model = load_weights(config, weights_path, device)
model.to(device)
model.eval()
# Load tokenizer
tokenizer, vocab_size = get_tokenizer(config)
return model, tokenizer, device
def generate_response(prompt, max_new_tokens):
generated_text = generate_text(
model=model,
tokenizer=tokenizer,
input_text=prompt,
max_new_tokens=max_new_tokens,
context_length=256,
temperature=0.9,
top_k=2,
eos_token=tokenizer.eos_token_id,
device=device
)
return generated_text
# Initialize global variables
model, tokenizer, device = initialize_model()
# Create Gradio interface
iface = gr.Interface(
fn=generate_response,
inputs=[
gr.Textbox(
lines=3,
placeholder="Enter your prompt here...",
label="Input Prompt"
),
gr.Slider(
minimum=50,
maximum=256,
value=100,
step=10,
label="Max New Tokens"
)
],
outputs=gr.Textbox(
lines=5,
label="Generated Text"
),
title="SmolLM Text Generator",
description="Enter a prompt and adjust the maximum number of tokens to generate text with SmolLM model."
)
if __name__ == "__main__":
iface.launch()