SmolLMTextGenerator / SmolLm3.py
crpatel's picture
gradio app
fb26382
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import SiLU
import yaml
# from gptdataloader import create_dataloader_v1
# from chapter5 import calc_loss_loader, calculate_loss_batch
def _init_weights(module, std=0.041666666666666664):
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
class RotaryPositionalEmbedding(nn.Module):
"""
# https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py#L240
Rotary Positional Embedding (RoPE) for transformers Implemntation derived from https://github.com/huggingface/transformers/blob/main/src/transformers/models/llama/modeling_llama.py
"""
def __init__(self, dim: int, theta: float = 10000.0):
super().__init__()
self.dim = dim
self.theta = theta
def forward(self, x: torch.Tensor, seq_len: int) -> torch.Tensor:
"""
Apply rotary positional embedding to the input tensor.
Args:
x (torch.Tensor): Input tensor of shape # B, T, H, D
seq_len (int): Sequence length. #T
Returns:
torch.Tensor: Output tensor with rotary positional embeddings applied.
"""
B, T, H, H_D = x.shape
# Generate position indices
position = torch.arange(T, dtype=torch.float32, device=x.device).unsqueeze(-1)
# Generate frequencies
freqs = torch.exp(
torch.arange(0, H_D, 2, dtype=torch.float32, device=x.device) *
-(torch.log(torch.tensor(self.theta)) / H_D)
)
# Compute sinusoids
sinusoid = position * freqs
sin = torch.sin(sinusoid)
cos = torch.cos(sinusoid)
# Reshape sin and cos to match the input tensor's shape
sin = sin.unsqueeze(0).unsqueeze(2) # Shape: (1, T, 1, D // 2)
cos = cos.unsqueeze(0).unsqueeze(2) # Shape: (1, T, 1, D // 2)
# Apply rotary embeddings
x_rotated = x.clone()
x_rotated[..., 0::2] = x[..., 0::2] * cos - x[..., 1::2] * sin
x_rotated[..., 1::2] = x[..., 1::2] * cos + x[..., 0::2] * sin
return x_rotated
class LlamaAttention(nn.Module):
"""
(self_attn): LlamaAttention(
(q_proj): Linear(in_features=576, out_features=576, bias=False)
(k_proj): Linear(in_features=576, out_features=192, bias=False)
(v_proj): Linear(in_features=576, out_features=192, bias=False)
(o_proj): Linear(in_features=576, out_features=576, bias=False)
)
"""
def __init__(self, config, rotary_emb):
super().__init__()
self.config = config
self.num_attention_heads = self.config['num_attention_heads']
self.hidden_size = self.config['hidden_size']
# Ensure the hidden size is divisible by the number of attention heads
if self.hidden_size % self.num_attention_heads != 0:
raise ValueError(
f"hidden_size ({self.hidden_size}) must be divisible by num_attention_heads ({self.num_attention_heads})"
)
self.num_key_value_heads = self.config['num_key_value_heads']
self.head_dim = self.hidden_size // self.num_attention_heads
self.q_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # D,D
self.k_proj = nn.Linear(self.hidden_size, self.head_dim*self.num_key_value_heads, bias=False) # D,D/H
self.v_proj = nn.Linear(self.hidden_size, self.head_dim*self.num_key_value_heads, bias=False) # D,D/H
self.o_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=False) # D,D
# Convert the mask to boolean type when creating it
# self.register_buffer("mask",
# torch.triu(torch.ones(self.config['max_position_embeddings'],
# self.config['max_position_embeddings']),
# diagonal=1)) # Convert to boolean
self.rotary_pos_emb = rotary_emb
def forward(self, x):
B, T, C = x.size()
q = self.q_proj(x) # B,T,D
k = self.k_proj(x) # B,T,D/H
v = self.v_proj(x) # B,T,D/H
q = q.view(B, T, self.num_attention_heads, self.head_dim) # B,T,H,D
k = k.view(B, T, self.num_key_value_heads, self.head_dim) # B,T,H,D
v = v.view(B, T, self.num_key_value_heads, self.head_dim) # B,T,H,D
q = q.transpose(1,2) # B,H,T,D
k = k.transpose(1,2) # B,num_key_value_heads,T,D
v = v.transpose(1,2) # B,num_key_value_heads,T,D
# apply rotary positional embedding
q = self.rotary_pos_emb(q, T)
k = self.rotary_pos_emb(k, T)
# Repeat k/v heads if num_key_value_heads < num_attention_heads
if self.num_key_value_heads != self.num_attention_heads:
k = k.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) # B,kv_head,T,D -> B,H,T,D
v = v.repeat_interleave(self.num_attention_heads // self.num_key_value_heads, dim=1) # B,kv_head,T,D -> B,H,T,D
# Manual attention Stats
# Q(B,H,T,D) @K.T(B,H,D,T) = Q.K_T (B,H,T,T)
# attn_scores = q @ k.transpose(-2,-1) # B,H,T,T
# mask_bool = self.mask[:T,:T].bool() # T,T
# attn_scores.masked_fill_(mask_bool, -torch.inf) # B,H,T,T
# attn_weights = F.softmax(attn_scores/k.size(-1)**0.5, dim=-1) # B,H,T,T
# context_vector = attn_weights @ v # B,H,T,T * B,H,T,D = B,H,T,D
# context_vector = context_vector.transpose(1,2) # B,T,H,D
# context_vector = context_vector.contiguous().view(B,T,C) # B,T,H,D -> B,T,D
# Manual attention Stats ENDS
# Scaled dot-product attention STARTS
attn_out = F.scaled_dot_product_attention(q, k, v, is_causal=True)
context_vector = attn_out.transpose(1,2).reshape(B,T,C)
# Scaled dot-product attention ENDS
context_vector = self.o_proj(context_vector)
return context_vector
class LlamaMLP(nn.Module):
"""
(mlp): LlamaMLP(
(gate_proj): Linear(in_features=576, out_features=1536, bias=False)
(up_proj): Linear(in_features=576, out_features=1536, bias=False)
(down_proj): Linear(in_features=1536, out_features=576, bias=False)
(act_fn): SiLU()
)
"""
def __init__(self, config):
super().__init__()
self.config = config
self.gate_proj = nn.Linear(self.config['hidden_size'], self.config['intermediate_size'], bias=False)
self.up_proj = nn.Linear(self.config['hidden_size'], self.config['intermediate_size'], bias=False)
self.down_proj = nn.Linear(self.config['intermediate_size'], self.config['hidden_size'], bias=False)
self.act_fn = SiLU()
def forward(self, x):
gate = self.gate_proj(x)
up = self.up_proj(x)
down = self.down_proj(self.act_fn(gate)*up)
return down
class LlamaRMSNorm(nn.Module):
"""
(norm): LlamaRMSNorm((576,), eps=1e-05)
# RMSNorm Formula:
# RMS(x) = sqrt((1 / d) * sum(x_i^2 for i in range(d)))
# x_normalized = x / RMS(x)
# output = gamma * x_normalized
"""
def __init__(self, config):
super().__init__()
self.config = config
self.eps = self.config['rms_norm_eps']
self.weight = nn.Parameter(torch.ones(self.config['hidden_size']))
def forward(self, x):
rms = torch.rsqrt(torch.mean(x ** 2, dim=-1, keepdim=True) + self.eps)
return self.weight *rms * x
class LlamaDecoderLayer(nn.Module):
def __init__(self, config, rotary_emb):
super().__init__()
self.config = config
self.self_attn = LlamaAttention(self.config, rotary_emb)
self.mlp = LlamaMLP(self.config)
self.input_layernorm = LlamaRMSNorm(self.config)
self.post_attention_layernorm = LlamaRMSNorm(self.config)
def forward(self, x):
residual = x
x = self.input_layernorm(x)
x = self.self_attn(x)
x = x + residual
residual = x
x = self.post_attention_layernorm(x)
x = self.mlp(x)
x = x + residual
return x
# # x = x + self.self_attn(self.input_layernorm(x))
# # x = x + self.mlp(self.post_attention_layernorm(x))
# return x
class LlamaModel(nn.Module):
def __init__(self, config):
super().__init__()
self.init_method = config['init_method']
self.config = config['model_config']
self.embed_tokens = nn.Embedding(self.config['vocab_size'], self.config['hidden_size'])
self.rotary_emb = RotaryPositionalEmbedding(self.config['hidden_size'], self.config['rope_theta'])
self.layers = nn.ModuleList([LlamaDecoderLayer(self.config, self.rotary_emb) for _ in range(self.config['num_hidden_layers'])])
self.norm = LlamaRMSNorm(self.config)
self.lm_head = nn.Linear(self.config['hidden_size'], self.config['vocab_size'], bias=False)
if self.config['tie_word_embeddings']:
self.lm_head.weight = self.embed_tokens.weight
self.apply(lambda m: _init_weights(m, self.init_method['std']))
def forward(self, x, y=None):
x = self.embed_tokens(x)
for layer in self.layers:
x = layer(x)
x = self.norm(x)
logits = self.lm_head(x) # B,T,V
logits = logits.view(-1, logits.size(-1)) # Shape: [B*T, V]
if y is not None:
y = y.view(-1) # Shape: [B*T]
loss = torch.nn.functional.cross_entropy(logits, y)
return logits, loss
else:
return logits, None