Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import pipeline | |
# Load the models using pipeline | |
image_model = pipeline("image-classification", model="dima806/deepfake_vs_real_image_detection") | |
# Define the prediction function | |
def predict(image): | |
result = image_model(image) | |
print("Raw prediction result:", result) # Debugging statement | |
# Convert the result to the expected format | |
output = {item['label']: item['score'] for item in result} | |
print("Formatted prediction result:", output) # Debugging statement | |
return output | |
except Exception as e: | |
print("Error during prediction:", e) # Debugging statement | |
return {"error": str(e)} | |
# Create Gradio interface | |
with gr.Blocks() as iface: | |
image_input = gr.Image(type="filepath", label="Upload Image File", visible=False) | |
output = gr.Label() | |
submit_button = gr.Button("Submit") | |
submit_button.click(fn=predict, inputs=[audio_input, image_input, model_choice], outputs=output) | |
iface.launch() | |