phase-hunter / app.py
crimeacs's picture
Added explanations
9c68237
raw
history blame
21 kB
# Gradio app that takes seismic waveform as input and marks 2 phases on the waveform as output.
import gradio as gr
import numpy as np
import pandas as pd
from phasehunter.data_preparation import prepare_waveform
import torch
from scipy.stats import gaussian_kde
from bmi_topography import Topography
import earthpy.spatial as es
import obspy
from obspy.clients.fdsn import Client
from obspy.clients.fdsn.header import FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException
from obspy.geodetics.base import locations2degrees
from obspy.taup import TauPyModel
from obspy.taup.helper_classes import SlownessModelError
from obspy.clients.fdsn.header import URL_MAPPINGS
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from matplotlib.colors import LightSource
from glob import glob
def make_prediction(waveform):
waveform = np.load(waveform)
processed_input = prepare_waveform(waveform)
# Make prediction
with torch.inference_mode():
output = model(processed_input)
p_phase = output[:, 0]
s_phase = output[:, 1]
return processed_input, p_phase, s_phase
def mark_phases(waveform, uploaded_file):
if uploaded_file is not None:
waveform = uploaded_file.name
processed_input, p_phase, s_phase = make_prediction(waveform)
# Create a plot of the waveform with the phases marked
if sum(processed_input[0][2] == 0): #if input is 1C
fig, ax = plt.subplots(nrows=2, figsize=(10, 2), sharex=True)
ax[0].plot(processed_input[0][0], color='black', lw=1)
ax[0].set_ylabel('Norm. Ampl.')
else: #if input is 3C
fig, ax = plt.subplots(nrows=4, figsize=(10, 6), sharex=True)
ax[0].plot(processed_input[0][0], color='black', lw=1)
ax[1].plot(processed_input[0][1], color='black', lw=1)
ax[2].plot(processed_input[0][2], color='black', lw=1)
ax[0].set_ylabel('Z')
ax[1].set_ylabel('N')
ax[2].set_ylabel('E')
p_phase_plot = p_phase*processed_input.shape[-1]
p_kde = gaussian_kde(p_phase_plot)
p_dist_space = np.linspace( min(p_phase_plot)-10, max(p_phase_plot)+10, 500 )
ax[-1].plot( p_dist_space, p_kde(p_dist_space), color='r')
s_phase_plot = s_phase*processed_input.shape[-1]
s_kde = gaussian_kde(s_phase_plot)
s_dist_space = np.linspace( min(s_phase_plot)-10, max(s_phase_plot)+10, 500 )
ax[-1].plot( s_dist_space, s_kde(s_dist_space), color='b')
for a in ax:
a.axvline(p_phase.mean()*processed_input.shape[-1], color='r', linestyle='--', label='P')
a.axvline(s_phase.mean()*processed_input.shape[-1], color='b', linestyle='--', label='S')
ax[-1].set_xlabel('Time, samples')
ax[-1].set_ylabel('Uncert., samples')
ax[-1].legend()
plt.subplots_adjust(hspace=0., wspace=0.)
# Convert the plot to an image and return it
fig.canvas.draw()
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image
def bin_distances(distances, bin_size=10):
# Bin the distances into groups of `bin_size` kilometers
binned_distances = {}
for i, distance in enumerate(distances):
bin_index = distance // bin_size
if bin_index not in binned_distances:
binned_distances[bin_index] = (distance, i)
elif i < binned_distances[bin_index][1]:
binned_distances[bin_index] = (distance, i)
# Select the first distance in each bin and its index
first_distances = []
for bin_index in binned_distances:
first_distance, first_distance_index = binned_distances[bin_index]
first_distances.append(first_distance_index)
return first_distances
def variance_coefficient(residuals):
# calculate the variance of the residuals
var = residuals.var()
# scale the variance to a coefficient between 0 and 1
coeff = 1 - (var / (residuals.max() - residuals.min()))
return coeff
def predict_on_section(client_name, timestamp, eq_lat, eq_lon, radius_km, source_depth_km, velocity_model, max_waveforms):
distances, t0s, st_lats, st_lons, waveforms, names = [], [], [], [], [], []
taup_model = TauPyModel(model=velocity_model)
client = Client(client_name)
window = radius_km / 111.2
max_waveforms = int(max_waveforms)
assert eq_lat - window > -90 and eq_lat + window < 90, "Latitude out of bounds"
assert eq_lon - window > -180 and eq_lon + window < 180, "Longitude out of bounds"
starttime = obspy.UTCDateTime(timestamp)
endtime = starttime + 120
try:
print('Starting to download inventory')
inv = client.get_stations(network="*", station="*", location="*", channel="*H*",
starttime=starttime, endtime=endtime,
minlatitude=(eq_lat-window), maxlatitude=(eq_lat+window),
minlongitude=(eq_lon-window), maxlongitude=(eq_lon+window),
level='station')
print('Finished downloading inventory')
except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):
fig, ax = plt.subplots()
ax.text(0.5,0.5,'Something is wrong with the data provider, try another')
fig.canvas.draw();
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image
waveforms = []
cached_waveforms = glob("data/cached/*.mseed")
for network in inv:
# Skip the SYntetic networks
if network.code == 'SY':
continue
for station in network:
print(f"Processing {network.code}.{station.code}...")
distance = locations2degrees(eq_lat, eq_lon, station.latitude, station.longitude)
arrivals = taup_model.get_travel_times(source_depth_in_km=source_depth_km,
distance_in_degree=distance,
phase_list=["P", "S"])
if len(arrivals) > 0:
starttime = obspy.UTCDateTime(timestamp) + arrivals[0].time - 15
endtime = starttime + 60
try:
if f"data/cached/{network.code}_{station.code}_{starttime}.mseed" not in cached_waveforms:
print('Downloading waveform')
waveform = client.get_waveforms(network=network.code, station=station.code, location="*", channel="*",
starttime=starttime, endtime=endtime)
waveform.write(f"data/cached/{network.code}_{station.code}_{starttime}.mseed", format="MSEED")
print('Finished downloading and caching waveform')
else:
print('Reading cached waveform')
waveform = obspy.read(f"data/cached/{network.code}_{station.code}_{starttime}.mseed")
except (IndexError, FDSNNoDataException, FDSNTimeoutException, FDSNInternalServerException):
print(f'Skipping {network.code}_{station.code}_{starttime}')
continue
waveform = waveform.select(channel="H[BH][ZNE]")
waveform = waveform.merge(fill_value=0)
waveform = waveform[:3]
len_check = [len(x.data) for x in waveform]
if len(set(len_check)) > 1:
continue
if len(waveform) == 3:
try:
waveform = prepare_waveform(np.stack([x.data for x in waveform]))
distances.append(distance)
t0s.append(starttime)
st_lats.append(station.latitude)
st_lons.append(station.longitude)
waveforms.append(waveform)
names.append(f"{network.code}.{station.code}")
print(f"Added {network.code}.{station.code} to the list of waveforms")
except:
continue
# If there are no waveforms, return an empty plot
if len(waveforms) == 0:
fig, ax = plt.subplots()
ax.text(0.5,0.5,'No waveforms found')
fig.canvas.draw();
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image
first_distances = bin_distances(distances, bin_size=10/111.2)
# Edge case when there are way too many waveforms to process
selection_indexes = np.random.choice(first_distances,
np.min([len(first_distances), max_waveforms]),
replace=False)
waveforms = np.array(waveforms)[selection_indexes]
distances = np.array(distances)[selection_indexes]
t0s = np.array(t0s)[selection_indexes]
st_lats = np.array(st_lats)[selection_indexes]
st_lons = np.array(st_lons)[selection_indexes]
names = np.array(names)[selection_indexes]
waveforms = [torch.tensor(waveform) for waveform in waveforms]
print('Starting to run predictions')
with torch.no_grad():
waveforms_torch = torch.vstack(waveforms)
output = model(waveforms_torch)
p_phases = output[:, 0]
s_phases = output[:, 1]
# Max confidence - min variance
p_max_confidence = np.min([p_phases[i::len(waveforms)].std() for i in range(len(waveforms))])
s_max_confidence = np.min([s_phases[i::len(waveforms)].std() for i in range(len(waveforms))])
print(f"Starting plotting {len(waveforms)} waveforms")
fig, ax = plt.subplots(nrows=1, ncols=3, figsize=(10, 3))
# Plot topography
print('Fetching topography')
params = Topography.DEFAULT.copy()
extra_window = 0.5
params["south"] = np.min([st_lats.min(), eq_lat])-extra_window
params["north"] = np.max([st_lats.max(), eq_lat])+extra_window
params["west"] = np.min([st_lons.min(), eq_lon])-extra_window
params["east"] = np.max([st_lons.max(), eq_lon])+extra_window
topo_map = Topography(**params)
topo_map.fetch()
topo_map.load()
print('Plotting topo')
hillshade = es.hillshade(topo_map.da[0], altitude=10)
topo_map.da.plot(ax = ax[1], cmap='Greys', add_colorbar=False, add_labels=False)
topo_map.da.plot(ax = ax[2], cmap='Greys', add_colorbar=False, add_labels=False)
ax[1].imshow(hillshade, cmap="Greys", alpha=0.5)
output_picks = pd.DataFrame({'station_name' : [], 'starttime' : [],
'p_phase, s' : [], 'p_uncertainty, s' : [],
's_phase, s' : [], 's_uncertainty, s' : [],
'velocity_p, km/s' : [], 'velocity_s, km/s' : []})
for i in range(len(waveforms)):
print(f"Plotting waveform {i+1}/{len(waveforms)}")
current_P = p_phases[i::len(waveforms)]
current_S = s_phases[i::len(waveforms)]
x = [t0s[i] + pd.Timedelta(seconds=k/100) for k in np.linspace(0,6000,6000)]
x = mdates.date2num(x)
# Normalize confidence for the plot
p_conf = 1/(current_P.std()/p_max_confidence).item()
s_conf = 1/(current_S.std()/s_max_confidence).item()
ax[0].plot(x, waveforms[i][0, 0]*10+distances[i]*111.2, color='black', alpha=0.5, lw=1)
ax[0].scatter(x[int(current_P.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='r', alpha=p_conf, marker='|')
ax[0].scatter(x[int(current_S.mean()*waveforms[i][0].shape[-1])], waveforms[i][0, 0].mean()+distances[i]*111.2, color='b', alpha=s_conf, marker='|')
ax[0].set_ylabel('Z')
ax[0].xaxis.set_major_formatter(mdates.DateFormatter('%H:%M:%S'))
ax[0].xaxis.set_major_locator(mdates.SecondLocator(interval=20))
delta_t = t0s[i].timestamp - obspy.UTCDateTime(timestamp).timestamp
velocity_p = (distances[i]*111.2)/(delta_t+current_P.mean()*60).item()
velocity_s = (distances[i]*111.2)/(delta_t+current_S.mean()*60).item()
print(f"Station {st_lats[i]}, {st_lons[i]} has P velocity {velocity_p} and S velocity {velocity_s}")
output_picks = output_picks.append(pd.DataFrame({'station_name': [names[i]], 'starttime' : [str(t0s[i])],
'p_phase, s' : [(delta_t+current_P.mean()*60).item()], 'p_uncertainty, s' : [current_P.std().item()*60],
's_phase, s' : [(delta_t+current_S.mean()*60).item()], 's_uncertainty, s' : [current_S.std().item()*60],
'velocity_p, km/s' : [velocity_p], 'velocity_s, km/s' : [velocity_s]}))
# Generate an array from st_lat to eq_lat and from st_lon to eq_lon
x = np.linspace(st_lons[i], eq_lon, 50)
y = np.linspace(st_lats[i], eq_lat, 50)
# Plot the array
ax[1].scatter(x, y, c=np.zeros_like(x)+velocity_p, alpha=0.5, vmin=0, vmax=8)
ax[2].scatter(x, y, c=np.zeros_like(x)+velocity_s, alpha=0.5, vmin=0, vmax=8)
# Add legend
ax[0].scatter(None, None, color='r', marker='|', label='P')
ax[0].scatter(None, None, color='b', marker='|', label='S')
ax[0].legend()
print('Plotting stations')
for i in range(1,3):
ax[i].scatter(st_lons, st_lats, color='b', label='Stations')
ax[i].scatter(eq_lon, eq_lat, color='r', marker='*', label='Earthquake')
# Generate colorbar for the velocity plot
cbar = plt.colorbar(ax[1].scatter(None, None, c=velocity_p, alpha=0.5, vmin=0, vmax=8), ax=ax[1])
cbar.set_label('P Velocity (km/s)')
ax[1].set_title('P Velocity')
cbar = plt.colorbar(ax[2].scatter(None, None, c=velocity_s, alpha=0.5, vmin=0, vmax=8), ax=ax[2])
cbar.set_label('S Velocity (km/s)')
ax[2].set_title('S Velocity')
plt.subplots_adjust(hspace=0., wspace=0.5)
fig.canvas.draw();
image = np.array(fig.canvas.renderer.buffer_rgba())
plt.close(fig)
return image, output_picks
model = torch.jit.load("model.pt")
with gr.Blocks() as demo:
gr.HTML("""
<div style="padding: 20px; border-radius: 10px;">
<h1 style="font-size: 30px; text-align: center; margin-bottom: 20px;">PhaseHunter <span style="animation: arrow-anim 10s linear infinite; display: inline-block; transform: rotate(45deg) translateX(-20px);">🏹</span>
<style>
@keyframes arrow-anim {
0% { transform: translateX(-20px); }
50% { transform: translateX(20px); }
100% { transform: translateX(-20px); }
}
</style></h1>
<p style="font-size: 16px; margin-bottom: 20px;">Detect <span style="background-image: linear-gradient(to right, #ED213A, #93291E);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;">P</span> and <span style="background-image: linear-gradient(to right, #00B4DB, #0083B0);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;">S</span> seismic phases with <span style="background-image: linear-gradient(to right, #f12711, #f5af19);
-webkit-background-clip: text;
-webkit-text-fill-color: transparent;
background-clip: text;">uncertainty</span></p>
<ul style="font-size: 16px; margin-bottom: 40px;">
<li>Detect seismic phases by selecting a sample waveform or uploading your own waveform in <code>.npy</code> format.</li>
<li>Select an earthquake from the global earthquake catalogue and PhaseHunter will analyze seismic stations in the given radius.</li>
<li>Waveforms should be sampled at 100 samples/sec and have 3 (Z, N, E) or 1 (Z) channels. PhaseHunter analyzes the first 6000 samples of your file.</li>
</ul>
</div>
""")
with gr.Tab("Try on a single station"):
with gr.Row():
# Define the input and output types for Gradio
inputs = gr.Dropdown(
["data/sample/sample_0.npy",
"data/sample/sample_1.npy",
"data/sample/sample_2.npy"],
label="Sample waveform",
info="Select one of the samples",
value = "data/sample/sample_0.npy"
)
upload = gr.File(label="Or upload your own waveform")
button = gr.Button("Predict phases")
outputs = gr.Image(label='Waveform with Phases Marked', type='numpy', interactive=False)
button.click(mark_phases, inputs=[inputs, upload], outputs=outputs)
with gr.Tab("Select earthquake from catalogue"):
gr.Markdown("""
Select an earthquake from the global earthquake catalogue and the app will download the waveform from the FDSN client of your choice.
Pick data for each waveform is reported in seconds from the start of the waveform.
Velocities are derived from distance and travel time determined by PhaseHunter picks ($v = \mathrm{distance}/\mathrm{predicted_pick_time}$).
Backround of velocity plot is colored by DEM.
""")
with gr.Row():
client_inputs = gr.Dropdown(
choices = list(URL_MAPPINGS.keys()),
label="FDSN Client",
info="Select one of the available FDSN clients",
value = "IRIS",
interactive=True
)
velocity_inputs = gr.Dropdown(
choices = ['1066a', '1066b', 'ak135',
'ak135f', 'herrin', 'iasp91',
'jb', 'prem', 'pwdk'],
label="1D velocity model",
info="Velocity model for station selection",
value = "1066a",
interactive=True
)
with gr.Column(scale=4):
with gr.Row():
timestamp_inputs = gr.Textbox(value='2019-07-04 17:33:49',
placeholder='YYYY-MM-DD HH:MM:SS',
label="Timestamp",
info="Timestamp of the earthquake",
max_lines=1,
interactive=True)
eq_lat_inputs = gr.Number(value=35.766,
label="Latitude",
info="Latitude of the earthquake",
interactive=True)
eq_lon_inputs = gr.Number(value=-117.605,
label="Longitude",
info="Longitude of the earthquake",
interactive=True)
source_depth_inputs = gr.Number(value=10,
label="Source depth (km)",
info="Depth of the earthquake",
interactive=True)
with gr.Column(scale=2):
with gr.Row():
radius_inputs = gr.Slider(minimum=1,
maximum=150,
value=50, label="Radius (km)",
step=10,
info="""Select the radius around the earthquake to download data from.\n
Note that the larger the radius, the longer the app will take to run.""",
interactive=True)
max_waveforms_inputs = gr.Slider(minimum=1,
maximum=100,
value=10,
label="Max waveforms per section",
step=1,
info="Maximum number of waveforms to show per section\n (to avoid long prediction times)",
interactive=True,
)
button = gr.Button("Predict phases")
output_image = gr.Image(label='Waveforms with Phases Marked', type='numpy', interactive=False)
output_picks = gr.Dataframe(label='Pick data',
type='pandas',
interactive=False)
button.click(predict_on_section,
inputs=[client_inputs, timestamp_inputs,
eq_lat_inputs, eq_lon_inputs,
radius_inputs, source_depth_inputs,
velocity_inputs, max_waveforms_inputs],
outputs=[output_image, output_picks])
demo.launch()